[1] X. Liu, Z. Luo, C. Yu, B. Jin, H. Tu, Release mechanism of fuel-N into NOx and N2O precursors during pyrolysis of Rice Straw, Energies 11 (2018) 520. [2] F. Shan, Q. Lin, K. Zhou, Y. Wu, W. Fu, P. Zhang, L. Song, C. Shao, B. Yi, An experimental study of ignition and combustion of single biomass pellets in air and oxy-fuel, Fuel 188 (2017) 277-284. [3] M. Tripathi, J.N. Sahu, P. Ganesan, Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review, Renew.Sust. Energ. Rev. 55 (2016) 467-481. [4] D. Mohan, C.U. Pittman, P.H. Steele, Pyrolysis of wood/biomass for bio-oil: A critical review, Energy Fuels 20 (2006) 848-889. [5] W.J. Liu, H. Jiang, H.Q. Yu, Development of biochar-based functional materials: Toward a sustainable platform carbon material, Chem. Rev. 115 (2015) 12251-12285. [6] L. Leng, X. Xu, L. Wei, L. Fan, H. Huang, J. Li, Q. Lu, J. Li, W. Zhou, Biochar stability assessment by incubation and modelling: Methods, drawbacks and recommendations, Sci. Total Environ. 664 (2019) 11-23. [7] S. Yuan, Z. Tan, Q. Huang, Migration and transformation mechanism of nitrogen in the biomass-biochar-plant transport process, Renew. Sust. Energy Rev. 85 (2018) 1-13. [8] X. Zhu, S. Yang, L. Wang, Y. Liu, F. Qian, W. Yao, S. Zhang, J. Chen, Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology, Environ. Pollut. 211 (2016) 20-27. [9] S. Xu, J. Chen, H. Peng, S. Leng, H. Li, W. Qu, Y. Hu, H. Li, S. Jiang, W. Zhou, L. Leng, Effect of biomass type and pyrolysis temperature on nitrogen in biochar, and the comparison with hydrochar, Fuel 291 (2021) 120128. [10] J. Leppalahti, Formation of NH3 and HCN in slow-heating-rate inert pyrolysis of peat, coal and bark, Fuel 74 (1995) 1363-1368. [11] J. C. Zhou, S. M. Masutani, D. M. Ishimura, S.Q. Turn, C.M. Kinoshita, Release of fuel-bound nitrogen during biomass gasification, Ind. Eng. Chem. Res. 39 (2000) 626-634. [12] J. Zhang, Y. Tian, J. Zhu, W. Zuo, L. Yin, Characterization of nitrogen transformation during microwave-induced pyrolysis of sewage sludge, J. Anal. Appl. Pyrolysis 105 (2014) 335-341. [13] S. Cheng, Y. Qiao, J. Huang, W. Wang, Z. Wang, Y. Yu, M. Xu, Effects of Ca and Na acetates on nitrogen transformation during sewage sludge pyrolysis, Proc. Combust. Inst. 37 (2019) 2715-2722. [14] L. Wei, L. Wen, T. Yang, N. Zhang, Nitrogen transformation during sewage sludge pyrolysis, Energy Fuels 29 (2015) 5088-5094. [15] P. Zhou, S. Xiong, Y. Zhang, H. Jiang, Y. Chi, L. Li, Study on the nitrogen transformation during the primary pyrolysis of sewage sludge by Py-GC/MS and Py-FTIR, Int. J. Hydrog. Energy 42 (2017) 18181-18188. [16] W. Chen, H. Yang, Y. Chen, M. Xia, X. Chen, H. Chen, Transformation of nitrogen and evolution of N-containing species during algae pyrolysis, Environ. Sci. Technol. 51(2017) 6570-6579. [17] H. Nan, Z. Xiao, L. Zhao, F. Yang, H. Xu, X. Xu, H. Qiu, Nitrogen transformation during pyrolysis of various N-containing biowastes with participation of mineral calcium, ACS Sustain. Chem. Eng. 8 (2020) 12197-12207. [18] Y. Li, C. Hong, Y. Wang, Y. Xing, X. Chang, Z. Zheng, Z. Li, X. Zhao, Nitrogen migration mechanism during pyrolysis of penicillin fermentation residue based on product characteristics and quantum chemical analysis, ACS Sustain. Chem. Eng. 8 (2020) 7721-7740. [19] W. de Jong, G.Di Nola, B.C.H. Venneker, H. Spliethoff, M.A. Wojtowicz, TG-FTIR pyrolysis of coal and secondary biomass fuels: Determination of pyrolysis kinetic parameters for main species and NOx precursors, Fuel 86 (2007) 2367-2376. [20] K. Tian, W.J. Liu, T.T. Qian, H. Jiang, H.Q. Yu, Investigation on the evolution of N-containing organic compounds during pyrolysis of sewage sludge, Environ. Sci. Technol. 48 (2014) 10888-10896. [21] G. Stubenberger, R. Scharler, S. Zahirovic, I. Obernberger, Experimental investigation of nitrogen species release from different solid biomass fuels as a basis for release models, Fuel 87 (2008) 793-806. [22] T. Liu, Y. Guo, N. Peng, Q. Lang, Y. Xia, C. Gai, Z. Liu, Nitrogen transformation among char, tar and gas during pyrolysis of sewage sludge and corresponding hydrochar, J. Anal. Appl. Pyrolysis 126 (2017) 298-306. [23] Y. Wang, B. Dong, Y. Fan, Y. Hu, X. Zhai, C. Deng, Y. Xu, D. Shen, X. Dai, Nitrogen transformation during pyrolysis of oilfield sludge with high polymer content, Chemosphere 219 (2019) 383-389. [24] M. Garcia-Perez, X.S. Wang, J. Shen, M.J. Rhodes, F. Tian, W.J. Lee, H. Li, C.Z. Wu, Fast pyrolysis of oil mallee woody biomass: Effect of temperature on the yield and quality of pyrolysis products, Ind. Eng. Chem. Res. 47 (2008) 1846-1854. [25] I.Y. Eom, J.Y. Kim, T.S. Kim, S.M. Lee, D. Choi, I.G. Choi, J.W. Choi, Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass, Bioresource Technol. 104 (2012) 687-694. [26] B.M. Wagenaar, W. Prins, W.P.M. Van Swaaij, Pyrolysis of biomass in the rotating cone reactor: Modelling and experimental justification, Chem. Eng. Sci. 49 (1994) 5109-5126. [27] J. Akhtar, N.S. Amin, A review on operating parameters for optimum liquid oil yield in biomass pyrolysis, Renew. Sust. Energy Rev. 16 (2012) 5101-5109. [28] P. Zong, Y. Jiang, Y. Tian, J. Li, M. Yuan, Y. Ji, M. Chen, D. Li, Y. Qiao, Pyrolysis behavior and product distributions of biomass six group components: Starch, cellulose, hemicellulose, lignin, protein and oil, Energy Conv. Manag. 216 (2020) 112777. [29] Y. Tian, J. Zhang, W. Zuo, L. Chen, Y. Cui, T. Tan, Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge, Environ. Sci. Technol. 47 (2013) 3498-3505. [30] Q. Wang, Z. Zhang, G. Xu, G. Li, Pyrolysis behaviors of antibiotic fermentation residue and wastewater sludge from penicillin production: Kinetics, gaseous products distribution, and nitrogen transformation, J. Anal. Appl. Pyrol. 158 (2021) 105208. [31] Q.Q. Ren, C.S. Zhao, X. Wu, C. Liang, X.P. Chen, J.Z. Shen, Z. Wang, Formation of NOx precursors during wheat straw pyrolysis and gasification with O2 and CO2, Fuel 89 (2010) 1064-1069. [32] K.M. Hansson, J. Samuelsson, C. Tullin, L.E. Amand, Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds, Combust. Flame 137 (2004) 265-277. [33] L. L. Tan, C. Z. Li, Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. part I. effects of reactor configuration on the determined yields of HCN and NH3 during pyrolysis, Fuel 79 (2000) 1883-1889. [34] S. Yuan, Z. Zhou, J. Li, X. Chen, F. Wang, HCN and NH3 released from biomass and soybean cake under rapid pyrolysis, Energy Fuels 24 (2010) 6166-6171. [35] X. Liu, Z. Luo, C. Yu, G. Xie, Conversion mechanism of fuel-N during pyrolysis of biomass wastes, Fuel 246 (2019) 42-50. [36] Y. Zhang, C. Zhou, Z. Deng, X. Li, Y. Liu, J. Qu, X. Li, L. Wang, J. Dai, J. Fu, C. Zhang, M. Yu, H. Yu, Influence of corn straw on distribution and migration of nitrogen and heavy metals during microwave-assisted pyrolysis of municipal sewage sludge, Sci. Total Environ. 815 (2022) 152303. [37] S.W. Kim, B.S. Koo, D.H. Lee, A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed, Bioresource. Technol. 162 (2014) 96-102. [38] O. Debono, A. Villot, Nitrogen products and reaction pathway of nitrogen compounds during the pyrolysis of various organic wastes, J. Anal. Appl. Pyrolysis114 (2015) 222-234. [39] W. Chen, Y. Chen, H. Yang, M. Xia, K. Li, X. Chen, H. Chen, Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect, Bioresource Technol. 245 (2017) 860-868. |