Chinese Journal of Chemical Engineering ›› 2024, Vol. 75 ›› Issue (11): 152-160.DOI: 10.1016/j.cjche.2024.06.018
Previous Articles Next Articles
Sarra Hamidoud, Malek Bendjaballah, Imane Kouadri, Mohammed Rabeh Makhlouf
Received:
2024-01-29
Revised:
2024-05-02
Accepted:
2024-06-10
Online:
2024-07-31
Published:
2024-11-28
Contact:
Malek Bendjaballah,E-mail:malekbendjabal@gmail.com
Sarra Hamidoud, Malek Bendjaballah, Imane Kouadri, Mohammed Rabeh Makhlouf
通讯作者:
Malek Bendjaballah,E-mail:malekbendjabal@gmail.com
Sarra Hamidoud, Malek Bendjaballah, Imane Kouadri, Mohammed Rabeh Makhlouf. Multi-objective optimization of wastewater treatment using electrocoagulation[J]. Chinese Journal of Chemical Engineering, 2024, 75(11): 152-160.
Sarra Hamidoud, Malek Bendjaballah, Imane Kouadri, Mohammed Rabeh Makhlouf. Multi-objective optimization of wastewater treatment using electrocoagulation[J]. 中国化学工程学报, 2024, 75(11): 152-160.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2024.06.018
[1] J. Nemcik, F. Krupa, S. Ozana, Z. Slanina, Wastewater treatment modeling methods review, IFAC PapersOnLine 55 (4) (2022) 195-200. [2] D.T. Moussa, M.H. El-Naas, M. Nasser, M.J. Al-Marri, A comprehensive review of electrocoagulation for water treatment: potentials and challenges, J. Environ. Manage. 186 (Pt 1) (2017) 24-41. [3] M. Stanga, Sanitation: Cleaning and Disinfection in the Food Industry, John Wiley & Sons (2010). [4] K.E. Adou, A.R. Kouakou, A.D. Ehouman, R.D. Tyagi, P. Drogui, K. Adouby, Coupling anaerobic digestion process and electrocoagulation using iron and aluminium electrodes for slaughterhouse wastewater treatment, Sci. Afr. 16 (2022) e01238. [5] M. Bayramoglu, M. Eyvaz, M. Kobya, Treatment of the textile wastewater by electrocoagulation economical evaluation, Chem. Eng. J. 128 (2-3) (2007) 155-161. [6] I. Linares-Hernandez, C. Barrera-Diaz, G. Roa-Morales, B. Bilyeu, F. Urena-Nunez, Influence of the anodic material on electrocoagulation performance, Chem. Eng. J. 148 (1) (2009) 97-105. [7] M. Aiyd Jasim, F.Y. AlJaberi, Investigation of oil content removal performance in real oily wastewater treatment by electrocoagulation technology: RSM design approach, Results Eng. 18 (2023) 101082. [8] F.Y. AlJaberi, New design of an electrocoagulation reactor to remove pollutants from groundwater: analysis and optimization using response surface methodology, S. Afr. N. J. Chem. Eng. 46 (2023) 205-216. [9] T. Harif, A. Adin, Characteristics of aggregates formed by electroflocculation of a colloidal suspension, Water Res. 41 (13) (2007) 2951-2961. [10] E. Bazrafshan, L. Mohammadi, A. Ansari-Moghaddam, A.H. Mahvi, Heavy metals removal from aqueous environments by electrocoagulation process-a systematic review, J. Environ. Health Sci. Eng. 13 (2015) 74. [11] J.S. Do, M.L. Chen, Decolourization of dye-containing solutions by electrocoagulation, J. Appl. Electrochem. 24 (8) (1994) 785-790. [12] M. Bayramoglu, M. Kobya, O.T. Can, M. Sozbir, Operating cost analysis of electrocoagulation of textile dye wastewater, Sep. Purif. Technol. 37 (2) (2004) 117-125. [13] A. Negash, D. Tibebe, M. Mulugeta, Y. Kassa, A study of basic and reactive dyes removal from synthetic and industrial wastewater by electrocoagulation process, S. Afr. N. J. Chem. Eng. 46 (2023) 122-131. [14] A.A. Hafiz, H.M. El-Din, A.M. Badawi, Chemical destabilization of oil-in-water emulsion by novel polymerized diethanolamines, J. Colloid Interface Sci. 284 (1) (2005) 167-175. [15] N. Gousmi, K. Bensadok, Study of the applicability of the electrocoagulation process for the treatment of petroleum waste, Third International Conference on Energy, Materials, Applied Energetics and Pollution ICEMAEP2016, October 30-31, Constantine, Algeria (2016). [16] N.M. Mostefa, M. Tir, Coupling flocculation with electroflotation for waste oil/water emulsion treatment. Optimization of the operating conditions, Desalination 161 (2) (2004) 115-121. [17] O. Larue, E. Vorobiev, C. Vu, B. Durand, Electrocoagulation and coagulation by iron of latex particles in aqueous suspensions, Sep. Purif. Technol. 31 (2) (2003) 177-192. [18] A.G. Alcala-Delgado, V. Lugo-Lugo, I. Linares-Hernandez, V. Martinez-Miranda, R.M. Fuentes-Rivas, F. Urena-Nunez, Industrial wastewater treated by galvanic, galvanic Fenton, and hydrogen peroxide systems, J. Water Process Eng. 22 (2018) 1-12. [19] M. Dolatabadi, T. Swiergosz, S. Ahmadzadeh, Electro-Fenton approach in oxidative degradation of dimethyl phthalate-the treatment of aqueous leachate from landfills, Sci. Total Environ. 772 (2021) 145323. [20] P. Canizares, F. Martinez, C. Jimenez, J. Lobato, M.A. Rodrigo, Coagulation and electrocoagulation of wastes polluted with dyes, Environ. Sci. Technol. 40 (20) (2006) 6418-6424. [21] E. Lacasa, P. Canizares, C. Saez, F.J. Fernandez, M.A. Rodrigo, Removal of nitrates from groundwater by electrocoagulation, Chem. Eng. J. 171 (3) (2011) 1012-1017. [22] Hu, S. Lo, W. Kuan, Effects of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminum electrodes, Water Res., 37(18) (2003) 4513-4523. [23] H.Z. Zhao, B. Zhao, W. Yang, T.H. Li, Effects of Ca2+ and Mg2+ on defluoridation in the electrocoagulation process, Environ. Sci. Technol. 44 (23) (2010) 9112-9116. [24] H.R. Tashauoei, M. Mahdavi, A. Fatehizadeh, E. Taheri, Comprehensive dataset on fluoride removal from aqueous solution by enhanced electrocoagulation process by persulfate salts, Data Brief 50 (2023) 109492. [25] N. Adhoum, L. Monser, N. Bellakhal, J.E. Belgaied, Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(VI) by electrocoagulation, J. Hazard. Mater. 112 (3) (2004) 207-213. [26] P. Gao, X.M. Chen, F. Shen, G.H. Chen, Removal of chromium(VI) from wastewater by combined electrocoagulation-electroflotation without a filter, Sep. Purif. Technol. 43 (2) (2005) 117-123. [27] S. Irdemez, Y.S. Yildiz, V. Tosunoglu, Optimization of phosphate removal from wastewater by electrocoagulation with aluminum plate electrodes, Sep. Purif. Technol. 52 (2) (2006) 394-401. [28] W.H. Cao, M. Mehrvar, Slaughterhouse wastewater treatment by combined anaerobic baffled reactor and UV/H2O2 processes, Chem. Eng. Res. Des. 89 (7) (2011) 1136-1143. [29] S. Bellebia, S. Kacha, Z. Bouberka, A.Z. Bouyakoub, Z. Derriche, Color removal from acid and reactive dye solutions by electrocoagulation and electrocoagulation/adsorption processes, Water Environ. Res. 81 (4) (2009) 382-393. [30] M.M. Emamjomeh, M. Sivakumar, Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes, J. Environ. Manage. 90 (5) (2009) 1663-1679. [31] J.N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drogui, J. Naja, Electrocoagulation process in water treatment: a review of electrocoagulation modeling approaches, Desalination 404 (2017) 1-21. [32] I. Heidmann, W. Calmano, Removal of Zn(II), Cu(II), Ni(II), Ag(I) and Cr(VI) present in aqueous solutions by aluminium electrocoagulation, J. Hazard Mater. 152 (3) (2008) 934-941. [33] I. Zongo, A.H. Maiga, J. Wethe, G. Valentin, J.P. Leclerc, G. Paternotte, F. Lapicque, Electrocoagulation for the treatment of textile wastewaters with Al or Fe electrodes: compared variations of COD levels, turbidity and absorbance, J. Hazard. Mater. 169 (1-3) (2009) 70-76. [34] G. Roa-Morales, E. Campos-Medina, J. Aguilera-Cotero, B. Bilyeu, C. Barrera-Diaz, Aluminum electrocoagulation with peroxide applied to wastewater from pasta and cookie processing, Sep. Purif. Technol. 54 (1) (2007) 124-129. [35] M. Ugurlu, A. Gurses, C. Dogar, M. Yalcin, The removal of lignin and phenol from paper mill effluents by electrocoagulation, J. Environ. Manage. 87 (3) (2008) 420-428. [36] J.J. Santana, V.F. Mena, A. Betancor-Abreu, R. Rodriguez-Raposo, J. Izquierdo, R.M. Souto, Use of alumina sludge arising from an electrocoagulation process as functional mesoporous microcapsules for active corrosion protection of aluminum, Prog. Org. Coat. 151 (2021) 106044. [37] K. Govindan, M. Raja, S. Uma Maheshwari, M. Noel, Y. Oren, Comparison and understanding of fluoride removal mechanism in Ca2+, Mg2+ and Al3+ ion assisted electrocoagulation process using Fe and Al electrodes, J. Environ. Chem. Eng. 3 (3) (2015) 1784-1793. [38] F. Janpoor, A. Torabian, V. Khatibikamal, Treatment of laundry waste-water by electrocoagulation, J. Chem. Technol. Biotechnol. 86 (8) (2011) 1113-1120. [39] M. Ebba, P. Asaithambi, E. Alemayehu, Development of electrocoagulation process for wastewater treatment: optimization by response surface methodology, Heliyon 8 (5) (2022) e09383. [40] M. Ebba, P. Asaithambi, E. Alemayehu, Investigation on operating parameters and cost using an electrocoagulation process for wastewater treatment, Appl. Water Sci. 11 (11) (2021) 175. [41] A. Arka, C. Dawit, A. Befekadu, S.K. Debela, P. Asaithambi, Wastewater treatment using sono-electrocoagulation process: optimization through response surface methodology, Sustain. Water Resour. Manag. 8 (3) (2022) 61. [42] P. Asaithambi, R. Govindarajan, Hybrid sono-electrocoagulation process for the treatment of landfill leachate wastewater: optimization through a central composite design approach, Environ. Process. 8 (2) (2021) 793-816. [43] P. Asaithambi, D. Beyene, A.R.A. Aziz, E. Alemayehu, Removal of pollutants with determination of power consumption from landfill leachate wastewater using an electrocoagulation process: optimization using response surface methodology (RSM), Appl. Water Sci. 8 (2) (2018) 69. [44] Z. Al-Qodah, Y. Al-Qudah, W. Omar, On the performance of electrocoagulation-assisted biological treatment processes: a review on the state of the art, Environ. Sci. Pollut. Res. Int. 26 (28) (2019) 28689-28713. [45] P. Asaithambi, M.B. Yesuf, R. Govindarajan, P. Selvakumar, S. Niju, T. Pandiyarajan, A. Kadier, D.D. Nguyen, E. Alemayehu, Industrial wastewater treatment using batch recirculation electrocoagulation (BRE) process: studies on operating parameters, Sustain. Chem. Environ. 2 (2023) 100014. [46] H. Ehsani, N. Mehrdadi, G. Asadollahfardi, G.N. Bidhendi, G. Azarian, Continuous electrocoagulation process for pretreatment of high organic load moquette industry wastewater containing polyvinyl acetate: a pilot study, Int. J. Environ. Anal. Chem. 102 (10) (2022) 2260-2276. [47] P. Asaithambi, R. Govindarajan, M.B. Yesuf, P. Selvakumar, E. Alemayehu, Investigation of direct and alternating current-electrocoagulation process for the treatment of distillery industrial effluent: studies on operating parameters, J. Environ. Chem. Eng. 9 (2) (2021) 104811. [48] Y.O.A. Fouad, A.H. Konsowa, H.A. Farag, G.H. Sedahmed, Performance of an electrocoagulation cell with horizontally oriented electrodes in oil separation compared to a cell with vertical electrodes, Chem. Eng. J. 145 (3) (2009) 436-440. [49] M. Tiaiba, B. Merzouk, M. Mazour, Study of the applicability of the electrocoagulation process for the treatment of textile waste, Algerian. J. Environ. Sci. Technol, (2023)1-7. [50] M. Bennajah, reportTreatment of Liquid Industrial Waste by Electrocoagulation Electroflotation in an Airlift Reactor, Ph.D. Thesis, National Polytechnic Institute of Toulouse, (2007). [51] K.L. Dubrawski, C. Du, M. Mohseni, General potential-current model and validation for electrocoagulation, Electrochim. Acta 129 (2014) 187-195. [52] S. Zhao, G.H. Huang, G.H. Cheng, Y.F. Wang, H.Y. Fu, Hardness, COD and turbidity removals from produced water by electrocoagulation pretreatment prior to reverse osmosis membranes, Desalination 344 (2014) 454-462. [53] A. Aitbara, S. Hazourli, S. Boumaza, S. Touahria, M. Cherifi, Comparative Study of the Efficiency of Pretreatment of Effluents from an Industrial Dairy by Coagulation-Flocculation and Dynamic Electrocoagulation, (2013). [54] P. Canizares, C. Jimenez, F. Martinez, M.A. Rodrigo, C. Saez, The pH as a key parameter in the choice between coagulation and electrocoagulation for the treatment of wastewaters, J. Hazard Mater. 163 (1) (2009) 158-164. [55] A. Azzouz, Concepte de modelare si elemente de strategie in designul industrial, Editura Tehnica-Info, Chisinau, (2001). [56] E. Assaad, A. Azzouz, D. Nistor, A.V. Ursu, T. Sajin, D.N. Miron, F. Monette, P. Niquette, R. Hausler, Metal removal through synergic coagulation-flocculation using an optimized chitosan-montmorillonite system, Appl. Clay Sci. 37 (3-4) (2007) 258-274. [57] A. Shokri, Degradation of 4-Chloro phenol in aqueous media thru UV/Persulfate method by Artificial neural network and full factorial design method, Int. J. Environ. Anal. Chem. 102 (17) (2022) 5077-5091. [58] A. Shokri, Using Mn based on lightweight expanded clay aggregate (LECA) as an original catalyst for the removal of NO2 pollutant in aqueous environment, Surf. Interfaces 21 (2020) 100705. [59] A. Shokri, Employing electro-peroxone process for degradation of Acid Red 88 in aqueous environment by Central Composite Design: a new kinetic study and energy consumption, Chemosphere 296 (2022) 133817. [60] A. Shokri, Investigation of UV/H2O2 process for removal of ortho-toluidine from industrial wastewater by response surface methodology based on the central composite design, Desalination Water Treat. 58 (2017) 258-266. [61] A. Shokri, B. Nasernejad, Treatment of spent caustic wastewater by electro-Fenton process: kinetics and cost analysis, Process. Saf. Environ. Prot. 172 (2023) 836-845. [62] A. Shokri, The treatment of spent caustic in the wastewater of olefin units by ozonation followed by electrocoagulation process, Desalin. Water Treat. 111 (2018) 173-182. |
[1] | Zhongxiang Ding, Wei Song, Tong Zhou, Weihua Cui, Changsong Wang. Thiourea crystal growth kinetics, mechanism and process optimization during cooling crystallization [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 62-69. |
[2] | Jing Chen, Wenqi Zhong, Guanwen Zhou, Jinming Li, Shasha Ding. Desulfurization characteristics of slaked lime and regulation optimization of circulating fluidized bed flue gas desulfurization process—A combined experimental and numerical simulation study [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 163-175. |
[3] | Can Ding, Minglei Yang, Yunmeng Zhao, Wenli Du. Graph convolutional network for axial concentration profiles prediction in simulated moving bed [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 270-280. |
[4] | Dechang Cheng, Zhihong Ma, Ziyang Liu, Xiaohui Liu, Tao Liu, Weizhen Sun, Ling Zhao. Experiments and kinetic modeling of the sorbitol dehydration to isosorbide catalyzed by sulfuric acid under conditions of non-constant volume [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 281-289. |
[5] | Kai Ji, Zhencheng Ye, Feng Qian. Reaction network design and hybrid modeling of S Zorb [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 301-310. |
[6] | Pengcheng Lu, Yaoyao Li, Jianjun Zhang, Yuchao Zhao, Qingqiang Wang, Ying Chen, Nan Jin, Xiugang Yu. Continuous synthesis of N, N-dicyanoethylaniline in microreactors: Reaction kinetics and process intensification [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 95-105. |
[7] | Zhenguang Liu, Zexiang Ding, Yifeng Cao, Baojian Liu, Qiwei Yang, Zhiguo Zhang, Qilong Ren, Zongbi Bao. Temperature-dependent solubility of Rebaudioside A in methanol/ethanol and ethyl acetate mixtures: Experimental measurements and thermodynamic modeling [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 164-176. |
[8] | Baowei Niu, Yanjie Yi, Yuwen Wei, Fuzhen Zhang, Lili Wang, Li Xia, Xiaoyan Sun, Shuguang Xiang. Phase equilibrium data prediction and process optimizationin butadiene extraction process [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 1-12. |
[9] | Chunliang Liu, Jianhui Zhong, Ranran Wei, Jiuxu Ruan, Kaicong Wang, Zhaoyou Zhu, Yinglong Wang, Limei Zhong. Process design and intensification of multicomponent azeotropes special distillation separation via molecular simulation and system optimization [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 24-44. |
[10] | Dandan Ren, Jiale Xie, Tianle Chen, Haibin Qu, Xingchu Gong. Design and optimization of a greener sinomenine hydrochloride preparation process considering variations among different batches of the medicinal herb [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 77-90. |
[11] | Zhiwei Zhu, Minglei Yang, Wangli He, Renchu He, Yunmeng Zhao, Feng Qian. A deep reinforcement learning approach to gasoline blending real-time optimization under uncertainty [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 183-192. |
[12] | Huashuai Wu, Gang Wang, Yong Yang, Yongwang Li. Modeling analysis of cobalt-based Fischer-Tropsch catalyst particles [J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 82-92. |
[13] | Shida Gao, Cuimei Bo, Chao Jiang, Quanling Zhang, Genke Yang, Jian Chu. Hybrid modeling for carbon monoxide gas-phase catalytic coupling to synthesize dimethyl oxalate process [J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 234-250. |
[14] | Shen Li, Yin-Ning Zhou, Zhong-Xin Liu, Zheng-Hong Luo. Effect of solvent on the initiation mechanism of living anionic polymerization of styrene: A computational study [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 135-142. |
[15] | Xin Dai, Liang Zhao, Renchu He, Wenli Du, Weimin Zhong, Zhi Li, Feng Qian. Data-driven Wasserstein distributionally robust chance-constrained optimization for crude oil scheduling under uncertainty [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 152-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||