[1] S.S. Jang, W.A. Goddard, Structures and transport properties of hydrated water-soluble dendrimer-grafted polymer membranes for application to polymer electrolyte membrane fuel cells: Classical molecular dynamics approach, J. Phys. Chem. C 111 (6) (2007) 2759-2769. [2] M.P. Escudier, F. Presti, S. Smith, Drag reduction in the turbulent pipe flow of polymers, J. Non Newton. Fluid Mech. 81 (3) (1999) 197-213. [3] A. Al-Sarkhi, Drag reduction with polymers in gas-liquid/liquid-liquid flows in pipes: A literature review, J. Nat. Gas Sci. Eng. 2 (1) (2010) 41-48. [4] R.B. Bird, P.J. Dotson, N.L. Johnson, Polymer solution rheology based on a finitely extensible bead-Spring chain model, J. Non Newton. Fluid Mech. 7 (2-3) (1980) 213-235. [5] B. Purnode, M.J. Crochet, Polymer solution characterization with the FENE-P model, J. Non Newton. Fluid Mech. 77 (1-2) (1998) 1-20. [6] D. Shogin, P.A. Amundsen, A charged finitely extensible dumbbell model: Explaining rheology of dilute polyelectrolyte solutions, Phys. Fluids 32 (6) (2020) 063101. [7] P. Ilg, E. De Angelis, I.V. Karlin, C.M. Casciola, S. Succi, Polymer dynamics in wall turbulent flow, Europhys. Lett. 58 (4) (2002) 616-622. [8] N.P. Thien, R.I. Tanner, A new constitutive equation derived from network theory, J. Non Newton. Fluid Mech. 2 (4) (1977) 353-365. [9] M.W. Johnson Jr, D. Segalman, A model for viscoelastic fluid behavior which allows non-affine deformation, J. Non Newton. Fluid Mech. 2 (3) (1977) 255-270. [10] L. Khezzar, A. Filali, M. AlShehhi, Flow and heat transfer of FENE-P fluids in ducts of various shapes: Effect of Newtonian solvent contribution, J. Non Newton. Fluid Mech. 207 (2014) 7-20. [11] M.B. Khan, C. Sasmal, R.P. Chhabra, Flow and heat transfer characteristics of a rotating cylinder in a FENE-P type viscoelastic fluid, J. Non Newton. Fluid Mech. 282 (2020) 104333. [12] D.O. Olagunju, A self-similar solution for forced convection boundary layer flow of a FENE-P fluid, Appl. Math. Lett. 19 (5) (2006) 432-436. [13] R.C. Bataller, Similarity solutions for boundary layer flow and heat transfer of a FENE-P fluid with thermal radiation, Phys. Lett. A 372 (14) (2008) 2431-2439. [14] F. Lewis, D. Mantovani, Methods to investigate the adhesion of soft nano-coatings on metal substrates-Application to polymer-coated stents, Macromol. Mater. Eng. 294 (1) (2009) 11-19. [15] A. Mokmeli, M. Saffar-Avval, Prediction of nanofluid convective heat transfer using the dispersion model, Int. J. Therm. Sci. 49 (3) (2010) 471-478. [16] F. Akbaridoust, M. Rakhsha, A. Abbassi, M. Saffar-Avval, Experimental and numerical investigation of nanofluid heat transfer in helically coiled tubes at constant wall temperature using dispersion model, Int. J. Heat Mass Transf. 58 (1-2) (2013) 480-491. [17] T. Sheikhalipour, A. Abbassi, Numerical investigation of nanofluid heat transfer inside trapezoidal microchannels using a novel dispersion model, Adv. Powder Technol. 27 (4) (2016) 1464-1472. [18] S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transf. 121 (2) (1999) 280-289. [19] J. Wensel, B. Wright, D. Thomas, W. Douglas, B. Mannhalter, W. Cross, H.P. Hong, J. Kellar, P. Smith, W. Roy, Enhanced thermal conductivity by aggregation in heat transfer nanofluids containing metal oxide nanoparticles and carbon nanotubes, Appl. Phys. Lett. 92 (2) (2008) 023110. [20] M.S. Liu, M.C.C. Lin, C.Y. Tsai, C.C. Wang, Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method, Int. J. Heat Mass Transf. 49 (17-18) (2006) 3028-3033. [21] X.Q. Wang, A.S. Mujumdar, A review on nanofluids-Part II: Experiments and applications, Braz. J. Chem. Eng. 25 (4) (2008) 631-648. [22] J. Buongiorno, Convective transport in nanofluids, J. Heat Transf. 128 (3) (2006) 240-250. [23] W.A. Khan, I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet, Int. J. Heat Mass Transf. 53 (11-12) (2010) 2477-2483. [24] M. Azam, N. Abbas, K. Ganesh Kumar, S. Wali, Transient bioconvection and activation energy impacts on Casson nanofluid with gyrotactic microorganisms and nonlinear radiation, Waves Random Complex Medium. (2022) 1-20. [25] M.G. Reddy, R. Naveen Kumar, B.C. Prasannakumara, N.G. Rudraswamy, K. Ganesh Kumar, Magnetohydrodynamic flow and heat transfer of a hybrid nanofluid over a rotating disk by considering Arrhenius energy, Commun. Theor. Phys. 73 (4) (2021) 045002. [26] D.G. Prakasha, M.V.V.N.L. Sudharani, K.G. Kumar, E.M. Elsaid, M.R. Eid, Thermal amelioration of aluminium nano-alloys on swirling aqueous MHD viscous nanofluid flow via a deformable cylinder: Applying magnetic dipole, J. Therm. Anal. Calorim. 148 (13) (2023) 6197-6206. [27] K. Ganesh Kumar, Impact of magnetic dipole on flow and heat transfer of AA7072-AA7075/water based nanofluid over a stretching sheet using Koo and Kleinstreuer model, Eur. Phys. J. Plus 137 (6) (2022) 669. [28] V. Puneeth, S. Manjunatha, K. Ganesh Kumar, M. Gnaneswara Reddy, Perspective of multiple slips on 3D flow of Al2O3-TiO2-CuO/H2O ternary nanofluid past an extending surface due to non-linear thermal radiation, Waves Random Complex Medium. (2022) 1-19. [29] M. Rahman, F. Sharif, M. Turkyilmazoglu, M.S. Siddiqui, Unsteady three-dimensional magnetohydrodynamics flow of nanofluids over a decelerated rotating disk with uniform suction, Pramana 96 (4) (2022) 170. [30] N.S. Wahid, N.M. Arifin, M. Turkyilmazoglu, M.E.H. Hafidzuddin, N.A. Abd Rahmin, MHD hybrid Cu-Al2O3/water nanofluid flow with thermal radiation and partial slip past a permeable stretching surface: Analytical solution, J. Nano Res. 64 (2020) 75-91. [31] A. Jafarimoghaddam, M. Turkyilmazoglu, A.V. Rosca, I. Pop, Complete theory of the elastic wall jet: A new flow geometry with revisited two-phase nanofluids, Eur. J. Mech. B 86 (2021) 25-36. [32] D.A. Nield, A.V. Kuznetsov, The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid, Int. J. Heat Mass Transf. 52 (25-26) (2009) 5792-5795. [33] J. Kierzenka, L.F. Shampine, A BVP Solver that controls residual and error, ACM Trans. Math. Softw. 27 (3) (2008) 299-316. |