[1] J.Q. Liang, D.Z. Liu, S.L. Xu, M. Ye, Modeling and analysis of air combustion and steam regeneration in methanol to olefins processes, Chin. J. Chem. Eng. 66(2024) 94-103. [2] F. Jiao, J.J. Li, X.L. Pan, J.P. Xiao, H.B. Li, H. Ma, M.M. Wei, Y. Pan, Z.Y. Zhou, M.R. Li, S. Miao, J. Li, Y.F. Zhu, D. Xiao, T. He, J.H. Yang, F. Qi, Q. Fu, X.H. Bao, Selective conversion of syngas to light olefins, Science 351(6277) (2016) 1065-1068. [3] J.B. Zhou, M.B. Gao, J.L. Zhang, W.J. Liu, T. Zhang, H. Li, Z.C. Xu, M. Ye, Z.M. Liu, Directed transforming of coke to active intermediates in methanol-to-olefins catalyst to boost light olefins selectivity, Nat. Commun. 12(1) (2021) 17. [4] M. Ye, P. Tian, Z.M. Liu, DMTO: a sustainable methanol-to-olefins technology, Engineering 7(1) (2021) 17-21. [5] J.B. Zhou, D.P. Liu, M. Ye, Z.M. Liu, Spatial-temporal self-attention network based on Bayesian optimization for light olefins yields prediction in methanolto-olefins process, Artif. Intell. Chem. 2(1) (2024) 100067. [6] J.B. Zhou, X. Li, D.P. Liu, F. Wang, T. Zhang, M. Ye, Z.M. Liu, A hybrid spatialtemporal deep learning prediction model of industrial methanol-to-olefins process, Front. Chem. Sci. Eng. 18(4) (2024) 42. [7] Z.Q. Wang, L. Wang, Z.H. Yuan, B.Z. Chen, Data-driven optimal operation of the industrial methanol to olefin process based on relevance vector machine, Chin. J. Chem. Eng. 34(2021) 106-115. [8] Z.Q. Ge, Review on data-driven modeling and monitoring for plant-wide industrial processes, Chemometr. Intell. Lab. Syst. 171(2017) 16-25. [9] B. Dey, B. Roy, S. Datta, T.S. Ustun, Forecasting ethanol demand in India to meet future blending targets: a comparison of ARIMA and various regression models, Energy Rep. 9(2023) 411-418. [10] A.R.S. Parmezan, V.M.A. Souza, G.E.A.P.A. Batista, Evaluation of statistical and machine learning models for time series prediction: identifying the state-of-theart and the best conditions for the use of eachmodel, Inf. Sci. 484(2019) 302-337. [11] C.W. Coley, R. Barzilay, T.S. Jaakkola, W.H. Green, K.F. Jensen, Prediction of organic reaction outcomes using machine learning, ACS Cent. Sci. 3(5) (2017) 434-443. [12] H. Shi, M.H. Xu, R. Li, Deep learning for household load forecasting: a novel pooling deep RNN, IEEE Trans. Smart Grid 9(5) (2018) 5271-5280. [13] H.L. Niu, K.L. Xu, W.Q. Wang, A hybrid stock price index forecasting model based on variational mode decomposition and LSTM network, Appl. Intell. 50(12) (2020) 4296-4309. [14] A.S. Saud, S. Shakya, Analysis of look back period for stock price prediction with RNN variants: a case study on banking sector of NEPSE, Procedia Comput. Sci. 167(2020) 788-798. [15] S. Kumar, L. Hussain, S. Banarjee, M. Reza, Energy load forecasting using deep learning approach-LSTM and GRU in spark cluster, in: 2018 Fifth International Conference on Emerging Applications of Information Technology (EAIT), IEEE, Kolkata, India, 2018. [16] X. Zhang, T.Y. Xue, H. Eugene Stanley, Comparison of econometric models and artificial neural networks algorithms for the prediction of Baltic dry index, IEEE Access 7(2018) 1647-1657. [17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, I. Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30(2007) (NIPS 2017), Long Beach, CA, USA. [18] M. Gustavsson, S. Käall, P. Svedberg, J.S. Inda-Diaz, S. Molander, J. Coria, T. Backhaus, E. Kristiansson, Transformers enable accurate prediction of acute and chronic chemical toxicity in aquatic organisms, Sci. Adv. 10(10) (2024) eadk6669. [19] W.K. Wang, C.J. Feng, R.M. Han, Z.Y. Wang, L.S. Ye, Z.Y. Du, H. Wei, F. Zhang, Z. L. Peng, J.Y. Yang, trRosettaRNA: automated prediction of RNA 3D structure with transformer network, Nat. Commun. 14(1) (2023) 7266. [20] A.K. Mishra, J. Renganathan, A. Gupta, Volatility forecasting and assessing risk of financial markets using multi-transformer neural network based architecture, Eng. Appl. Artif. Intell. 133(2024) 108223. [21] J. Kim, J. Obregon, H. Park, J.Y. Jung, Multi-step photovoltaic power forecasting using transformer and recurrent neural networks, Renew. Sustain. Energy Rev. 200(2024) 114479. [22] X.Y. Wang, W.P. Ma, A hybrid deep learning model with an optimal strategy based on improved VMD and transformer for short-term photovoltaic power forecasting, Energy 295(2024) 131071. [23] Q.Y. Luo, S.L. He, X. Han, Y.H. Wang, H.F. Li, LSTTN: a long-short term Transformer-based spatiotemporal neural network for traffic flow forecasting, Knowl. Base Syst. 293(2024) 111637. [24] J.Q. Wang, J.P. Liu, H.S. Wang, M.S. Zhou, G.L. Ke, L.F. Zhang, J.Z. Wu, Z.F. Gao, D. N. Lu, A comprehensive transformer-based approach for high-accuracy gas adsorption predictions in metal-organic frameworks, Nat. Commun. 15(1) (2024) 1904. [25] W. Zhang, X.Y. Li, H. Zhang, L.Y. Yang, K.X. Bi, S.Y. Chai, L. Zhou, Y.G. Dang, X. Ji, Y.Y. Dai, Time-series forecasting of large-scale green ammonia production: an intelligent dynamic modeling case in the Inner Mongolia area of China, Ind. Eng. Chem. Res. 63(28) (2024) 12526-12546. [26] D.N. Reshef, Y.A. Reshef, H.K. Finucane, S.R. Grossman, G. McVean, P.J. Turnbaugh, E.S. Lander, M. Mitzenmacher, P.C. Sabeti, Detecting novel associations in large data sets, Science 334(6062) (2011) 1518-1524. [27] H. Robbins, S. Monro, A stochastic approximation method, Ann. Math. Stat. 22(3) (1951) 400-407. [28] S.M. Lundberg, S.I. Lee, A unified approach to interpreting model predictions, in: NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems, 1995. Long Beach, CA, USA. [29] H. Wang, Z.L. Yuan, Y.B. Chen, B.Y. Shen, A.X. Wu, An industrial missing values processing method based on generating model, Comput. Netw. 158(2019) 61-68. [30] H. Demirhan, Z. Renwick, Missing value imputation for short to mid-term horizontal solar irradiance data, Appl. Energy 225(2018) 998-1012. [31] R.F. Engle, Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica 50(4) (1982) 987. [32] B. Lim, S. Zohren, Time-series forecasting with deep learning: a survey, Phil. Trans. R. Soc. A. 379(2194) (2021) 20200209. [33] F.M. Dekking, A modern introduction to probability and statistics: understanding why and how, Springer Sci. Bus. Media, 2005. [34] K.M. He, X.Y. Zhang, S.Q. Ren, J. Sun, Deep residual learning for image recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. IEEE, 2016. [35] J.L. Ba, J.R. Kiros, G.E. Hinton, Layer normalization, arXiv preprint arXiv:1607. 06450(2016), 1607.06450. [36] D.P. Kingma, J. Ba, M.M. Hammad, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980(2014) 1412.6980. [37] J.C. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization, J. Mach. Learn. Res. 12(7) (2011) 2121-2159. [38] S.Y. Li, X.Y. Jin, Y. Xuan, X.Y. Zhou, W.H. Chen, Y.X. Wang, X.F. Yan, Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting, In: Conference on Neural Information Processing Systems, Vancouver, Canada, 2020. [39] H.X. Wu, J.H. Xu, J.M. Wang, M.S. Long, Autoformer: decomposition transformers with auto-correlation for long-term series forecasting, https://doi. org/10.48550/arXiv.2106.13008. [40] H.Y. Zhou, S.H. Zhang, J.Q. Peng, S. Zhang, J.X. Li, H. Xiong, W.C. Zhang, Informer: beyond efficient transformer for long sequence time-series forecasting, Proc. AAAI Conf. Artif. Intell. 35(12) (2021) 11106-11115. [41] X.Q. Nie, X.G. Zhou, Z.Q. Li, L.Y. Wang, X.T. Lin, T. Tong, LogTrans: providing efficient local-global fusion with transformer and CNN parallel network for biomedical image segmentation, in: 2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys). Hainan, China, IEEE, 2022. |