[1] A. Lazaridou, L.R. Smith, S. Pattisson, N.F. Dummer, J.J. Smit, P. Johnston, G.J. Hutchings, Recognizing the best catalyst for a reaction, Nat. Rev. Chem. 7 (4) (2023) 287-295. [2] J.R. Kitchin, Machine learning in catalysis, Nat. Catal. 1 (2018) 230-232. [3] T. Toyao, Z. Maeno, S. Takakusagi, T. Kamachi, I. Takigawa, K.I. Shimizu, Machine learning for catalysis informatics: recent applications and prospects, ACS Catal. 10 (3) (2020) 2260-2297. [4] M. Suvarna, J. Perez-Ramirez, Embracing data science in catalysis research, Nat. Catal. 7 (2024) 624-635. [5] W.F. Maier, Early years of high-throughput experimentation and combinatorial approaches in catalysis and materials science, ACS Comb. Sci. 21 (6) (2019) 437-444. [6] X.D. Xiang, X. Sun, G. Briceno, Y. Lou, K.A. Wang, H. Chang, W.G. Wallace-Freedman, S.W. Chen, P.G. Schultz, A combinatorial approach to materials discovery, Science 268 (5218) (1995) 1738-1740. [7] B. Jandeleit, D.J. Schaefer, T.S. Powers, H.W. Turner, W.H. Weinberg, Combinatorial materials science and catalysis, Angew. Chem. Int. Ed 38 (17) (1999) 2494-2532. [8] F. Schuth, D. Demuth, High-throughput-experimentation in der heterogenen katalyse, Chem. Ing. Tech. 78 (7) (2006) 851-861. [9] P.C.P. Dr, Electrospray ionization tandem mass spectrometry in high-throughput screening of homogeneous catalysts, Angew. Chem. Int. Ed. 42 (25) (2003) 2832-2847. [10] M. Shevlin, M.R. Friedfeld, H.M. Sheng, N.A. Pierson, J.M. Hoyt, L.C. Campeau, P.J. Chirik, Nickel-catalyzed asymmetric alkene hydrogenation of α, β-unsaturated esters: high-throughput experimentation-enabled reaction discovery, optimization, and mechanistic elucidation, J. Am. Chem. Soc. 138 (10) (2016) 3562-3569. [11] P.J. Li, P. Chen, F.K. Qi, J.Y. Shi, W.J. Zhu, J.S. Li, P. Zhang, H. Xie, L.N. Li, M.C. Lei, X.Q. Ren, W.H. Wang, L. Zhang, X.F. Xiang, Y.W. Zhang, Z.L. Gao, X.J. Feng, W. Du, X. Liu, L.M. Xia, B.F. Liu, Y.W. Li, High-throughput and proteome-wide discovery of endogenous biomolecular condensates, Nat. Chem. 16 (7) (2024) 1101-1112. [12] I. Petousis, D. Mrdjenovich, E. Ballouz, M. Liu, D. Winston, W. Chen, T. Graf, T.D. Schladt, K.A. Persson, F.B. Prinz, High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials, Sci. Data 4 (2017) 160134. [13] J.J. Haven, E. Baeten, J. Claes, J. Vandenbergh, T. Junkers, High-throughput polymer screening in microreactors: boosting the Passerini three component reaction, Polym. Chem. 8 (19) (2017) 2972-2978. [14] B. Burger, P.M. Maffettone, V.V. Gusev, C.M. Aitchison, Y. Bai, X. Wang, X. Li, B.M. Alston, B. Li, R. Clowes, N. Rankin, B. Harris, R.S. Sprick, A.I. Cooper, A mobile robotic chemist, Nature 583 (7815) (2020) 237-241. [15] T.N. Nguyen, T.T.P. Nhat, K. Takimoto, A. Thakur, S. Nishimura, J. Ohyama, I. Miyazato, L. Takahashi, J. Fujima, K. Takahashi, T. Taniike, High-throughput experimentation and catalyst informatics for oxidative coupling of methane, ACS Catal. 10 (2) (2020) 921-932. [16] D. Guevarra, J.A. Haber, Y. Wang, L. Zhou, K. Kan, M.H. Richter, J.M. Gregoire, High throughput discovery of complex metal oxide electrocatalysts for the oxygen reduction reaction, Electrocatalysis 13 (1) (2022) 1-10. [17] T. Taniike, F.D. Cannavacciuolo, M. Khoshsefat, D. De Canditiis, G. Antinucci, P. Chammingkwan, R. Cipullo, V. Busico, End-to-end high-throughput approach for data-driven internal donor development in heterogeneous ziegler-natta propylene polymerization, ACS Catal. 14 (10) (2024) 7589-7599. [18] Q. Zhu, Y. Huang, D.L. Zhou, L.Y. Zhao, L.L. Guo, R.Y. Yang, Z.X. Sun, M. Luo, F. Zhang, H.Y. Xiao, X.S. Tang, X.C. Zhang, T. Song, X. Li, B.C. Chong, J.Y. Zhou, Y.H. Zhang, B.C. Zhang, J.Q. Cao, G.Z. Zhang, S. Wang, G.L. Ye, W.J. Zhang, H.T. Zhao, S. Cong, H.R. Li, L.L. Ling, Z. Zhang, W.W. Shang, J. Jiang, Y. Luo, Automated synthesis of oxygen-producing catalysts from Martian meteorites by a robotic AI chemist, Nat. Synth 3 (3) (2024) 319-328. [19] H.T. Zhao, W. Chen, H. Huang, Z.H. Sun, Z.J. Chen, L.J. Wu, B.C. Zhang, F.M. Lai, Z. Wang, M.L. Adam, C.H. Pang, P.K. Chu, Y. Lu, T. Wu, J. Jiang, Z.Y. Yin, X.F. Yu, A robotic platform for the synthesis of colloidal nanocrystals, Nat. Synth. 2 (2023) 505-514. [20] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors, Nature 323 (6088) (1986) 533-536. [21] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (3) (1995) 273-297. [22] G.E. Hinton, S. Osindero, Y.W. Teh, A fast learning algorithm for deep belief nets, Neural Comput. 18 (7) (2006) 1527-1554. [23] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, Commun. ACM 60 (6) (2017) 84-90. [24] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30 (2017) 6000-6010. [25] J. Devlin, M.W. Chang, K. Lee, K. Toutanova, E. Hulburd, D.Y. Liu, M.H. Wang, A.G. Catlin, M.Y. Lei, J.Y. Zhang, Y.Y. Ye, BERT: pre-training of deep bidirectional transformers for language understanding, In: Conference on the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, CA(US),2018. [26] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, P.J. Liu, Exploring the limits of transfer learning with a unified text-to-text transformer, J. Mach. Learn. Res. 21 (1) (2020) 5485-5551. [27] T.B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D.M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, D. Amodei, Language models are few-shot learners, Adv. Neural Inf. Process. Syst. 33 (2020) 1877-1901. [28] A. Radford, J.W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, I. Sutskever, Learning transferable visual models from natural language supervision, Proc. Mach. Learn. Res. 139 (2021) 8748-8763. [29] W. Samek, T. Wiegand, K.R. Muller, Explainable artificial intelligence: understanding, visualizing and interpreting deep learning models, (2017): 1708.08296. [30] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, A. Galstyan, A survey on bias and fairness in machine learning, ACM Comput. Surv. 54 (6) (2022) 1-35. [31] A. Jobin, M. Ienca, E. Vayena, The global landscape of AI ethics guidelines, Nat. Mach. Intell. 1 (9) (2019) 389-399. [32] X. Jia, H. Li, Machine learning enabled exploration of multicomponent metal oxides for catalyzing oxygen reduction in alkaline media, J. Mater. Chem. A 12 (21) (2024) 12487-12500. [33] P. Yin, X.F. Niu, S.B. Li, K. Chen, X. Zhang, M. Zuo, L. Zhang, H.W. Liang, Machine-learning-accelerated design of high-performance platinum intermetallic nanoparticle fuel cell catalysts, Nat. Commun. 15 (1) (2024) 415. [34] S.Y. Jiang, Y.R. Zhou, W. Xu, Q. Xia, M. Yi, X.W. Cheng, Machine learning-driven optimization and application of bimetallic catalysts in peroxymonosulfate activation for degradation of fluoroquinolone antibiotics, Chem. Eng. J. 486 (2024) 150297. [35] N.T. Wang, H.Y. He, Y.L. Wang, B. Xu, J. Harding, X.L. Yin, X. Tu, Machine learning-driven optimization of Ni-based catalysts for catalytic steam reforming of biomass tar, Energy Convers. Manag. 300 (2024) 117879. [36] A. Ramirez, E. Lam, D.P. Gutierrez, Y.H. Hou, H. Tribukait, L.M. Roch, C. Coperet, P. Laveille, Accelerated exploration of heterogeneous CO2 hydrogenation catalysts by Bayesian-optimized high-throughput and automated experimentation, Chem Catal. 4 (2) (2024) 100888. [37] L. Wang, X. Chen, Y. Du, Y. Zhou, Y. Gao, W. Cui, CataLM: empowering catalyst design through large language models, Int. J. Mach. Learn. & Cyber. (2025) (in press). [38] T.R. Wang, J.Y. Hu, R.H. Ouyang, Y.T. Wang, Y. Huang, S.L. Hu, W.X. Li, Nature of metal-support interaction for metal catalysts on oxide supports, Science 386 (6724) (2024) 915-920. [39] Y.D. Gao, K.J. Hu, J.H. Rao, Q. Zhu, K.B. Liao, Artificial intelligence-driven development of nickel-catalyzed enantioselective cross-coupling reactions, ACS Catal. 14 (24) (2024) 18457-18468. [40] T.P. Jayakumar, S.P. Suresh Babu, T.N. Nguyen, S.D. Le, R.P. Manchan, P. Phulkerd, P. Chammingkwan, T. Taniike, Exploration of ethanol-to-butadiene catalysts by high-throughput experimentation and machine learning, Appl. Catal. A Gen. 666 (2023) 119427. [41] J.A. Bennett, N. Orouji, M. Khan, S. Sadeghi, J. Rodgers, M. Abolhasani, Autonomous reaction Pareto-front mapping with a self-driving catalysis laboratory, Nat. Chem. Eng. 1 (3) (2024) 240-250. [42] T. Taniike, A. Fujiwara, S. Nakanowatari, F. Garcia-Escobar, K. Takahashi, Automatic feature engineering for catalyst design using small data without prior knowledge of target catalysis, Commun. Chem. 7 (1) (2024) 11. [43] T.A.A. Batchelor, T. Loffler, B. Xiao, O.A. Krysiak, V. Strotkotter, J.K. Pedersen, C.M. Clausen, A. Savan, Y.J. Li, W. Schuhmann, J. Rossmeisl, A. Ludwig, Complex-solid-solution electrocatalyst discovery by computational prediction and high-throughput experimentation, Angew. Chem. Int. Ed 60 (13) (2021) 6932-6937. [44] D.R. Hartree, The wave mechanics of an atom with a non-coulomb central field. part I. theory and methods, Math. Proc. Camb. Phil. Soc. 24 (1) (1928) 89-110. [45] W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (4A) (1965) A1133-A1138. [46] W.M.C. Foulkes, L. Mitas, R.J. Needs, G. Rajagopal, Quantum Monte Carlo simulations of solids, Rev. Mod. Phys. 73 (1) (2001) 33-83. [47] H.L. Xin, T.Y. Mou, H.S. Pillai, S.H. Wang, Y. Huang, Interpretable machine learning for catalytic materials design toward sustainability, Acc. Mater. Res. 5 (1) (2024) 22-34. [48] W.B. Xu, E. Diesen, T.W. He, K. Reuter, J.T. Margraf, Discovering high entropy alloy electrocatalysts in vast composition spaces with multiobjective optimization, J. Am. Chem. Soc. 146 (11) (2024) 7698-7707. [49] H.S. Feng, H. Ding, S. Wang, Y.J. Liang, Y. Deng, Y.S. Yang, M. Wei, X. Zhang, Machine-learning-assisted catalytic performance predictions of single-atom alloys for acetylene semihydrogenation, ACS Appl. Mater. Interfaces 14 (22) (2022) 25288-25296. [50] D. Roy, S.C. Mandal, B. Pathak, Machine learning-driven high-throughput screening of alloy-based catalysts for selective CO2 hydrogenation to methanol, ACS Appl. Mater. Interfaces 13 (47) (2021) 56151-56163. [51] Q. Zhu, F. Zhang, Y. Huang, H.Y. Xiao, L.Y. Zhao, X.C. Zhang, T. Song, X.S. Tang, X. Li, G. He, B.C. Chong, J.Y. Zhou, Y.H. Zhang, B.C. Zhang, J.Q. Cao, M. Luo, S. Wang, G.L. Ye, W.J. Zhang, X. Chen, S. Cong, D.L. Zhou, H.R. Li, J.L. Li, G. Zou, W.W. Shang, J. Jiang, Y. Luo, An all-round AI-chemist with a scientific mind, Natl. Sci. Rev. 9 (10) (2022) nwac190. |