[1] N.E. Jackson, M.A. Webb, J.J. de Pablo, Recent advances in machine learning towards multiscale soft materials design, Curr. Opin. Chem. Eng. 23 (2019) 106-114. [2] Y. Liu, T.L. Zhao, W.W. Ju, S.Q. Shi, Materials discovery and design using machine learning, J. Materiomics 3 (3) (2017) 159-177. [3] K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O.A. von Lilienfeld, K.R. Muller, A. Tkatchenko, Machine learning predictions of molecular properties: accurate many-body potentials and nonlocality in chemical space, J. Phys. Chem. Lett. 6 (12) (2015) 2326-2331. [4] Z. Zhang, K. Friedrich, Artificial neural networks applied to polymer composites: a review, Compos. Sci. Technol. 63 (14) (2003) 2029-2044. [5] W.Q. Liu, C.Z. Cao, Artificial neural network prediction of glass transition temperature of polymers, Colloid Polym. Sci. 287 (7) (2009) 811-818. [6] F. Hou, Z.Y. Wu, Z. Hu, Z.R. Xiao, L. Wang, X.W. Zhang, G.Z. Li, Comparison study on the prediction of multiple molecular properties by various neural networks, J. Phys. Chem. A 122 (46) (2018) 9128-9134. [7] G.A. Schwartz, Prediction of rheometric properties of compounds by using artificial neural networks, Rubber Chem. Technol. 74 (1) (2001) 116-123. [8] Y.F. Li, H.L. Minh, M.S. Cao, X.D. Qian, M. Abdel Wahab, An integrated surrogate model-driven and improved termite life cycle optimizer for damage identification in dams, Mech. Syst. Signal Process. 208 (2024) 110986. [9] L. Nguyen-Ngoc, Q. Nguyen-Huu, G. De Roeck, T. Bui-Tien, M. Abdel-Wahab, Deep neural network and evolved optimization algorithm for damage assessment in a truss bridge, Mathematics 12 (15) (2024) 2300. [10] Y.J. Guo, C. Wang, S.T. Han, G. Kosec, Y.L. Zhou, L.H. Wang, M. Abdel Wahab, A deep neural network model for parameter identification in deep drawing metal forming process, J. Manuf. Process. 133 (2025) 380-394. [11] D.Q. Nguyen, K.Q. Tran, T.D. Le, M. Abdel Wahab, H. Nguyen-Xuan, A data-driven uncertainty quantification framework in probabilistic bio-inspired porous materials (Material-UQ): an investigation for RotTMPS plates, Comput. Meth. Appl. Mech. Eng. 435 (2025) 117603. [12] M. Monai, M. Gambino, S. Wannakao, B.M. Weckhuysen, Propane to olefins tandem catalysis: a selective route towards light olefins production, Chem. Soc. Rev. 50 (20) (2021) 11503-11529. [13] Z. Gholami, F. Gholami, Z. Tisler, M. Vakili, A review on the production of light olefins using steam cracking of hydrocarbons, Energies 14 (23) (2021) 1-24. [14] G.S. Guo, Y. Ren, Y.B. Yu, Z.W. Liao, B.B. Jiang, Y. Yang, G.J. He, W.J. Fang, J.D. Wang, Y.R. Yang, Hyperbranched poly(amidoamine) as an efficient macroinitiator for steam cracking of naphtha, Fuel 299 (2021) 120907. [15] J. Chang, Y. Fu, Y. Shibata, M. Yoshimoto, K. Fujimoto, N. Tsubaki, Promotional effect of oxidation pretreatment on hydro-thermal cracking of Canadian oil sand bitumen, Fuel 84 (12-13) (2005) 1661-1663. [16] J. Chang, L. Fan, K. Fujimoto, Enhancement effect of free radical initiator on hydro-thermal cracking of heavy oil and model compound, Energy Fuels 13 (5) (1999) 1107-1108. [17] D.T. Wickham, J.R. Engel, S. Rooney, B.D. Hitch, Additives to improve fuel heat sink capacity in air/fuel heat exchangers, J. Propuls. Power 24 (1) (2008) 55-63. [18] D. Wickham, J. Engel, B. Hitch, Additives to Increase Fuel Heat Sink Capacity38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 07 July 2002 - 10 July 2002, Indianapolis, Indiana. Reston, Virginia: AIAA, 2002: 3872. [19] D.T. Wickham, J.R. Engel, B.D. Hitch, M.E. Karpuk, Initiators for endothermic fuels, J. Propuls. Power 17 (6) (2001) 1253-1257. [20] Z. Wang, R.S. Lin, W.J. Fang, G. Li, Y.S. Guo, Z.W. Qin, Triethylamine as an initiator for cracking of heptane, Energy 31 (14) (2006) 2773-2790. [21] A. Niaei, J. Towfighi, A.R. Khataee, K. Rostamizadeh, The use of ANN and the mathematical model for prediction of the main product yields in the thermal cracking of naphtha, Petrol. Sci. Technol. 25 (8) (2007) 967-982. [22] M. Sedighi, K. Keyvanloo, J. Towfighi, Modeling of thermal cracking of heavy liquid hydrocarbon: application of kinetic modeling, artificial neural network, and neuro-fuzzy models, Ind. Eng. Chem. Res. 50 (3) (2011) 1536-1547. [23] Y.K. Jin, J.L. Li, W.L. Du, F. Qian, Multi-objective optimization of pseudo-dynamic operation of naphtha pyrolysis by a surrogate model, Chem. Eng. Technol. 38 (5) (2015) 900-906. [24] Y.K. Jin, J.L. Li, W.L. Du, F. Qian, Adaptive sampling for surrogate modelling with artificial neural network and its application in an industrial cracking furnace, Can. J. Chem. Eng. 94 (2) (2016) 262-272. [25] F. Hua, Z. Fang, T. Qiu, Application of convolutional neural networks to large-scale naphtha pyrolysis kinetic modeling, Chin. J. Chem. Eng. 26 (12) (2018) 2562-2572. [26] F. Hua, Z. Fang, T. Qiu, Modeling ethylene cracking process by learning convolutional neural networks, . 13th International Symposium on Process Systems Engineering (PSE 2018). Elsevier, (2018), pp 41-846. [27] D. Rogers, M. Hahn, Extended-connectivity fingerprints, J. Chem. Inf. Model. 50 (5) (2010) 742-754. [28] M. Rupp, A. Tkatchenko, K.R. Muller, O.A. von Lilienfeld, Fast and accurate modeling of molecular atomization energies with machine learning, Phys. Rev. Lett. 108 (5) (2012) 058301. [29] D.G. Bonchev, Chemical graph theory: introduction and fundamentals, Gordon and Breach Science Publishers, Basel, Switzerland,1994. [30] A.M. Schweidtmann, J.G. Rittig, A. Konig, M. Grohe, A. Mitsos, M. Dahmen, Graph neural networks for prediction of fuel ignition quality, Energy Fuels 34 (9) (2020) 11395-11407. [31] G.B. Goh, C. Siegel, A. Vishnu, N. Hodas, N. Baker, How much chemistry does a deep neural network need to know to make accurate predictions? 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Lake Tahoe, NV, USA. IEEE, (2018) 1340-1349. [32] G.B. Goh, C. Siegel, A. Vishnu, N.O. Hodas, N. Baker, Chemception: a deep neural network with minimal chemistry knowledge matches the performance of expert-developed QSAR/QSPR models, arXiv E Prints (2017) arXiv1706.06689. [33] K.T. Schutt, F. Arbabzadah, S. Chmiela, K.R. Muller, A. Tkatchenko, Quantum-chemical insights from deep tensor neural networks, Nat. Commun. 8 (2017) 13890. [34] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, G. E. Dahl, Neural message passing for quantum chemistry, [accessed 2024-October-7], https://arxiv.org/abs/1704.01212v2. [35] Y.D. Shen, Y.L. Mao, X.D. Hong, Y. Yang, Y. Ren, J.D. Wang, Y.R. Yang, A.N. Kay Lup, Z.W. Liao, Time-integrated species flux analysis: a novel method for kinetic reduction and pathway analysis in pyrolysis process, AlChE. J. 70 (10) (2024) e18532. [36] L. van der Maaten, G. Hinton, Visualizing Data Using T-SNE. Journal of Machine Learning Research 9(2008) 2579-2605. [37] J. Bergstra, R. Bardenet, Y. Bengio, B. Kegl, Algorithms for hyper-parameter optimization, Proceedings of the 25th International Conference on Neural Information Processing Systems. Granada, Spain. ACM, (2011) 2546-2554. |