[1] H. Safaeipour, M. Forouzanfar, A. Casavola, A survey and classification of incipient fault diagnosis approaches, J. Process. Contr. 97 (2021) 1-16. [2] L.M. Elshenawy, T.A. Mahmoud, Fault diagnosis of time-varying processes using modified reconstruction-based contributions, J. Process. Contr. 70 (2018) 12-23. [3] J.J. Luo, Z.H. Jin, H.P. Jin, Q. Li, X. Ji, Y.Y. Dai, Causal temporal graph attention network for fault diagnosis of chemical processes, Chin. J. Chem. Eng. 70 (2024) 20-32. [4] J.X. Zhang, W.J. Luo, Y.Y. Dai, Y.M. Yao, Cycle temporal algorithm-based multivariate statistical methods for fault diagnosis in chemical processes, Chin. J. Chem. Eng. 47 (2022) 54-70. [5] L.Y. Jiang, L. Xie, S.Q. Wang, Fault diagnosis for batch processes by improved multi-model fisher discriminant analysis, Chin. J. Chem. Eng. 14 (3) (2006) 343-348. [6] X. Zhao, W.W. Yan, H.H. Shao, Monitoring and fault diagnosis for batch process based on feature extract in fisher subspace, Chin. J. Chem. Eng. 14 (6) (2006) 759-764. [7] M. Ram Maurya, R. Rengaswamy, V. Venkatasubramanian, Application of signed digraphs-based analysis for fault diagnosis of chemical process flowsheets, Eng. Appl. Artif. Intell. 17 (5) (2004) 501-518. [8] D. Gao, C.G. Wu, B.K. Zhang, X. Ma, Signed directed graph and qualitative trend analysis based fault diagnosis in chemical industry, Chin. J. Chem. Eng. 18 (2) (2010) 265-276. [9] H.L. Jiang, R. Patwardhan, S.L. Shah, Root cause diagnosis of plant-wide oscillations using the concept of adjacency matrix, J. Process. Contr. 19 (8) (2009) 1347-1354. [10] S. Kabir, An overview of fault tree analysis and its application in model based dependability analysis, Expert Syst. Appl. 77 (2017) 114-135. [11] Y.M. Wan, F. Yang, N. Lv, H.P. Xu, H. Ye, W.C. Li, P. Xu, L.M. Song, A.K. Usadi, Statistical root cause analysis of novel faults based on digraph models, Chem. Eng. Res. Des. 91 (1) (2013) 87-99. [12] L.H. Chiang, B.B. Jiang, X.X. Zhu, D.X. Huang, R.D. Braatz, Diagnosis of multiple and unknown faults using the causal map and multivariate statistics, J. Process. Contr. 28 (2015) 27-39. [13] J. Dong, K.R. Cao, K.X. Peng, Hierarchical causal graph-based fault root cause diagnosis and propagation path identification for complex industrial process monitoring, IEEE Trans. Instrum. Meas. 72 (2023) 3513911. [14] C.W.J. Granger, Investigating causal relations by econometric models and cross-spectral methods, Econometrica 37 (3) (1969) 424. [15] J.F. Geweke, Measures of conditional linear dependence and feedback between time series, J. Am. Stat. Assoc. 79 (388) (1984) 907-915. [16] L. Barnett, A.K. Seth, The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference, J. Neurosci. Methods 223 (2014) 50-68. [17] T. Yuan, S.J. Qin, Root cause diagnosis of plant-wide oscillations using Granger causality, IFAC Proc. Vol. 45 (15) (2012) 160-165. [18] H.S. Chen, Z.B. Yan, Y. Yao, T.B. Huang, Y.S. Wong, Systematic procedure for granger-causality-based root cause diagnosis of chemical process faults, Ind. Eng. Chem. Res. 57 (29) (2018) 9500-9512. [19] G. Shen, P.L. Wang, K.L. Hu, Q.Y. Ye, Fault root cause diagnosis method based on recurrent neural network and granger causality, 2021 CAA Symposium on Fault Detection, Supervision, and Safety for Technical Processes (SAFEPROCESS). December 17-18, 2021, Chengdu, China. IEEE, (2021) 1-6. [20] Y.X. Liu, B. Jafarpour, Graph attention network with Granger causality map for fault detection and root cause diagnosis, Comput. Chem. Eng. 180 (2024) 108453. [21] P.Y. Song, C.H. Zhao, B. Huang, Addressing heterogeneous time-frequency causality: source consistency exploring for industrial root cause alignment and diagnosis, IEEE Trans. Cybern. 55 (3) (2025) 1107-1120. [22] P.Y. Song, C.H. Zhao, B. Huang, MPGE and RootRank: a sufficient root cause characterization and quantification framework for industrial process faults, Neural Netw. 161 (2023) 397-417. [23] Y.D. Shu, J.S. Zhao, Data-driven causal inference based on a modified transfer entropy, Comput. Chem. Eng. 57 (2013) 173-180. [24] P. Duan, F. Yang, T.W. Chen, S.L. Shah, Direct causality detection via the transfer entropy approach, IEEE Trans. Contr. Syst. Technol. 21 (6) (2013) 2052-2066. [25] G. Li, S.J. Qin, T. Yuan, Data-driven root cause diagnosis of faults in process industries, Chemom. Intell. Lab. Syst. 159 (2016) 1-11. [26] B. Rashidi, D.S. Singh, Q. Zhao, Data-driven root-cause fault diagnosis for multivariate non-linear processes, Contr. Eng. Pract. 70 (2018) 134-147. [27] P. Duan, T.W. Chen, S.L. Shah, F. Yang, Methods for root cause diagnosis of plant-wide oscillations, AlChE. J. 60 (6) (2014) 2019-2034. [28] Y. Liu, H.S. Chen, H.B. Wu, Y. Dai, Y. Yao, Z.B. Yan, Simplified Granger causality map for data-driven root cause diagnosis of process disturbances, J. Process. Contr. 95 (2020) 45-54. [29] Q.C. Jiang, W.J. Wang, S.T. Chen, C.J. Pan, W.M. Zhong, Hierarchical fault root cause identification in plant-wide processes using distributed direct causality analysis, IEEE Trans. Ind. Inform. 20 (3) (2024) 3232-3241. [30] Q.C. Jiang, J.S. Jiang, W.J. Wang, C.J. Pan, W.M. Zhong, Partial cross mapping based on sparse variable selection for direct fault root cause diagnosis for industrial processes, IEEE Trans. Neural Netw. Learn. Syst. 35 (5) (2024) 6218-6230. [31] J.G. Wang, R. Chen, X.Y. Ye, Y. Yao, Z.T. Xie, S.W. Ma, L.L. Liu, Data-driven root cause diagnosis of process disturbances by exploring causality change among variables, J. Process. Contr. 129 (2023) 103062. [32] P.Y. Song, C.H. Zhao, B. Huang, M. Wu, Sparse and time-varying predictive relation extraction for root cause quantification of nonstationary process faults, IEEE Trans. Instrum. Meas. 71 (2022) 3525013. [33] S. Wang, Q. Zhao, Y.H. Han, J.K. Wang, Root cause diagnosis for process faults based on multisensor time-series causality discovery, J. Process. Contr. 122 (2023) 27-40. [34] Y.J. Zhou, K. Xu, F. He, Root cause diagnosis in multivariate time series based on modified temporal convolution and multi-head self-attention, J. Process. Contr. 117 (2022) 14-25. [35] Z.Q. Cheng, Y. Yang, W. Wang, W.J. Hu, Y.T. Zhuang, G.J. Song, Time2Graph: revisiting time series modeling with dynamic shapelets, Proc. AAAI Conf. Artif. Intell. 34 (4) (2020) 3617-3624. [36] L.X. Ye, E. Keogh, Time series shapelets: a novel technique that allows accurate, interpretable and fast classification, Data Min. Knowl. Discov. 22 (1) (2011) 149-182. [37] W.W. Yan, P.J. Guo, L. gong, Z.K. Li, Nonlinear and robust statistical process monitoring based on variant autoencoders, Chemom. Intell. Lab. Syst. 158 (2016) 31-40. [38] E. Parzen, On estimation of a probability density function and mode, Ann. Math. Statist. 33 (3) (1962) 1065-1076. [39] M. Cuturi, M. Blondel, Soft-DTW: a differentiable loss function for time-series, (2017): 1703.01541. [40] G. Birol, U. Cenk, C. Ali, A modular simulation package for fed-batch fermentation: penicillin production, Comput. Chem. Eng. 26 (11) (2002) 1553-1565. [41] P.Y. Song, C.H. Zhao, B. Huang, J.L. Ding, Explicit representation and customized fault isolation framework for learning temporal and spatial dependencies in industrial processes, IEEE Trans. Neural Netw. Learn. Syst. 35 (3) (2024) 2997-3011. |