[1] A.J. Mieszawska, W.J. Mulder, Z.A. Fayad, D.P. Cormode, Multifunctional gold nanoparticles for diagnosis and therapy of disease, Mol Pharm 10 (3) (2013) 831-847. [2] N.N.M. Adnan, Y.Y. Cheng, N.M.N. Ong, T.T. Kamaruddin, E. Rozlan, T.W. Schmidt, H.T.T. Duong, C. Boyer, Effect of gold nanoparticle shapes for phototherapy and drug delivery, Polym. Chem. 7 (16) (2016) 2888-2903. [3] F.Y. Kong, J.W. Zhang, R.F. Li, Z.X. Wang, W.J. Wang, W. Wang, Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications, Molecules 22 (9) (2017) 1445. [4] R. Garcia-Alvarez, M. Hadjidemetriou, A. Sanchez-Iglesias, L.M. Liz-Marzan, K. Kostarelos, In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape, Nanoscale 10 (3) (2018) 1256-1264. [5] G.T. Chen, P. Sarker, B.F. Qiao, T. Wei, Mesoscopic simulations of protein corona formation on zwitterionic peptide-grafted gold nanoparticles, J. Nanopart. Res. 25 (6) (2023) 108. [6] Y.W. Yin, Y.Q. Ma, H.M. Ding, Effect of nanoparticle curvature on its interaction with serum proteins, Langmuir 40 (29) (2024) 15205-15213. [7] E. Papa, J.P. Doucet, A. Sangion, A. Doucet-Panaye, Investigation of the influence of protein corona composition on gold nanoparticle bioactivity using machine learning approaches, SAR QSAR Environ. Res. 27 (7) (2016) 521-538. [8] S.J. Park, Protein-nanoparticle interaction: Corona formation and conformational changes in proteins on nanoparticles, Int. J. Nanomedicine 15 (2020) 5783-5802. [9] M.S. Jahan Sajib, P. Sarker, Y. Wei, X. Tao, T. Wei, Protein corona on gold nanoparticles studied with coarse-grained simulations, Langmuir 36 (44) (2020) 13356-13363. [10] A. Nandakumar, W. Wei, G. Siddiqui, H. Tang, Y. Li, A. Kakinen, X. Wan, K. Koppel, S. Lin, T.P. Davis, D.T. Leong, D.J. Creek, F. Ding, Y. Song, P.C. Ke, Dynamic protein corona of gold nanoparticles with an evolving morphology, ACS Appl. Mater. Interfaces 13 (48) (2021) 58238-58251. [11] P. Pourali, E. Neuhoferova, V. Dzmitruk, V. Benson, Investigation of protein corona formed around biologically produced gold nanoparticles, Materials 15 (13) (2022) 4615. [12] C. Cantarutti, Y. Hunashal, C.L. Rosa, M. Condorelli, S. Giorgetti, V. Bellotti, F. Fogolari, G. Esposito, The corona of protein-gold nanoparticle systems: The role of ionic strength, Phys. Chem. Chem. Phys. 24 (3) (2022) 1630-1637. [13] M. Mahmoudi, M.P. Landry, A. Moore, R. Coreas, The protein corona from nanomedicine to environmental science, Nat. Rev. Mater. (2023) 1-17. [14] A.F. Lima, V.S. Guido, N. Mina, R.J.S. Torquato, A.A. Sousa, Time evolution of ultrasmall gold nanoparticle-protein interactions, Langmuir 39 (19) (2023) 6823-6836. [15] G. Bashiri, M.S. Padilla, K.L. Swingle, S.J. Shepherd, M.J. Mitchell, K. Wang, Nanoparticle protein corona: From structure and function to therapeutic targeting, Lab Chip 23 (6) (2023) 1432-1466. [16] Y. Bae, X.T. Liu, Unveiling the effects of protein corona formation on the aggregation kinetics of gold nanoparticles in monovalent and divalent electrolytes, Environ. Pollut. 346 (2024) 123552. [17] N. Dridi, Z.C. Jin, W. Perng, H. Mattoussi, Probing protein corona formation around gold nanoparticles: Effects of surface coating, ACS Nano 18 (12) (2024) 8649-8662. [18] N.Y. Kruchinin, M.G. Kucherenko, Molecular-dynamics simulation of rearrangements in the conformational structure of polyampholytic macromolecules on the surface of a polarized metal nanoparticle, Colloid J. 82 (2) (2020) 136-143. [19] N.Y. Kruchinin, M.G. Kucherenko, A molecular dynamics simulation of polyampholytic polypeptides associated with atomic clusters on the surfaces of metal-like nanoobjects, Biophysics 65 (2) (2020) 186-194. [20] N.Y. Kruchinin, M.G. Kucherenko, P.P. Neyasov, Conformational changes of uniformly charged polyelectrolyte chains on the surface of a polarized gold nanoparticle: Molecular dynamics simulation and the theory of a Gaussian chain in a field, Russ. J. Phys. Chem. A 95 (2) (2021) 362-371. [21] M.G. Kucherenko, P.P. Neyasov, N.Y. Kruchinin, Modeling conformational rearrangements of a macromolecule adsorbed on a metal nanoparticle in an external electric field, Russ. J. Phys. Chem. B 17 (3) (2023) 745-754. [22] M.G.M.G. Kucherenko, Conformational structure of an adsorbed polyelectrolyte on a nanoparticle with low conductivity in an alternating electric field, Eurasian Phys. Tech. J. 20 (3(45)) (2023) 5-19. [23] N.Y. Kruchinin, M.G. Kucherenko, Molecular dynamics simulation of the conformational structure of polyampholyte polypeptides at the surface of a charged gold nanoparticle in external electric field, Polym. Sci. Ser. A 65 (2) (2023) 224-233. [24] N.Y. Kruchinin, M.G. Kucherenko, Rearrangements in the conformational structure of polyampholytic polypeptides on the surface of a uniformly charged and polarized nanowire: Molecular dynamics simulation, Surf. Interfaces 27 (2021) 101517. [25] N.Y. Kruchinin, M.G. Kucherenko, Molecular dynamics simulation of the conformational structure of uniform polypeptides on the surface of a polarized metal prolate nanospheroid with varying pH, Russ. J. Phys. Chem. A 96 (3) (2022) 624-632. [26] N.Y. Kruchinin, Molecular dynamics simulation of the rearrangement of polyampholyte conformations on the surface of a charged oblate metal nanospheroid in a microwave electric field, Nanosystems: Phys. Chem. Math. 14 (6) (2023) 719-728. [27] N.Y. Kruchinin, M.G. Kucherenko, P.P. Neyasov, Conformational rearrangements of adsorbed polyampholytes under periodic changes in polarity of a charged prolate gold nanospheroid, High Energy Chem. 57 (6) (2023) 459-471. [28] A.Y. Grosberg, A.R. Khokhlov, Statistical Physics of Macromolecules, AIP Press, New York, 1994. [29] J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten, Scalable molecular dynamics with NAMD, J. Comput. Chem. 26 (16) (2005) 1781-1802. [30] A.D. MacKerell, D. Bashford, M. Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, M. Karplus, All-atom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. B 102 (18) (1998) 3586-3616. [31] J. Huang, S. Rauscher, G. Nawrocki, T. Ran, M. Feig, B.L. de Groot, H. Grubmuller, A.D. MacKerell Jr, CHARMM36m: An improved force field for folded and intrinsically disordered proteins, Nat. Methods 14 (1) (2017) 71-73. [32] H. Heinz, R.A. Vaia, B.L. Farmer, R.R. Naik, Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12-6 and 9-6 lennard-Jones potentials, J. Phys. Chem. C 112 (44) (2008) 17281-17290. [33] R. Cappabianca, P. De Angelis, A. Cardellini, E. Chiavazzo, P. Asinari, Assembling biocompatible polymers on gold nanoparticles: Toward a rational design of particle shape by molecular dynamics, ACS Omega 7 (46) (2022) 42292-42303. [34] R.S. Janitra, W. Destiarani, A. Hardianto, U. Baroroh, F.G. Rohmatulloh, Rustaman, T. Subroto, Rukiah, M. Yusuf, Multilayer model of gold nanoparticles (AuNPs) and its application in the classical molecular dynamics simulation of citrate-capped AuNPs, J. Phys. Chem. B 127 (32) (2023) 7103-7110. [35] X.F. Wei, R. Hernandez, Heat transfer enhancement in tree-structured polymer linked gold nanoparticle networks, J. Phys. Chem. Lett. 14 (44) (2023) 9834-9841. [36] T. Darden, D. York, L. Pedersen, Particle mesh Ewald: An N?log(N) method for Ewald sums in large systems, J. Chem. Phys. 98 (12) (1993) 10089-10092. [37] W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79 (2) (1983) 926-935. [38] L.D. Landau, L.P. Pitaevskii, E.M. Lifshitz, Electrodynamics of Continuous Media, 2nd Edition, Elsevier Ltd., 1984. [39] M. Shankla, A. Aksimentiev, Conformational transitions and stop-and-go nanopore transport of single-stranded DNA on charged graphene, Nat. Commun. 5 (2014) 5171. [40] P. Chen, Z.H. Zhang, N. Gu, M. Ji, Effect of the surface charge density of nanoparticles on their translocation across pulmonary surfactant monolayer: A molecular dynamics simulation, mol simul 44 (2) (2018) 85-93. |