Chinese Journal of Chemical Engineering ›› 2025, Vol. 86 ›› Issue (10): 254-266.DOI: 10.1016/j.cjche.2025.09.007
Yuan Sheng, Wenxing Zhu, Zhijian Li, Shuo Li, Liangbin Shao, Jianguo Wang
Received:2025-04-06
Revised:2025-09-17
Accepted:2025-09-21
Online:2025-09-29
Published:2025-10-28
Contact:
Jianguo Wang,E-mail:jgw@zjut.edu.cn
Supported by:Yuan Sheng, Wenxing Zhu, Zhijian Li, Shuo Li, Liangbin Shao, Jianguo Wang
通讯作者:
Jianguo Wang,E-mail:jgw@zjut.edu.cn
基金资助:Yuan Sheng, Wenxing Zhu, Zhijian Li, Shuo Li, Liangbin Shao, Jianguo Wang. Pulse electrodeposited NiMoZn alloy hydrophobicized with PTFE for high performance alkaline water electrolysis[J]. Chinese Journal of Chemical Engineering, 2025, 86(10): 254-266.
Yuan Sheng, Wenxing Zhu, Zhijian Li, Shuo Li, Liangbin Shao, Jianguo Wang. Pulse electrodeposited NiMoZn alloy hydrophobicized with PTFE for high performance alkaline water electrolysis[J]. 中国化学工程学报, 2025, 86(10): 254-266.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2025.09.007
| [1] H.L. van Soest, M.G.J. den Elzen, D.P. van Vuuren, Net-zero emission targets for major emitting countries consistent with the Paris Agreement, Nat. Commun. 12 (1) (2021) 2140. [2] G.H. Patel, J. Havukainen, M. Horttanainen, R. Soukka, M. Tuomaala, Climate change performance of hydrogen production based on life cycle assessment, Green Chem. 26 (2) (2024) 992-1006. [3] F. Ueckerdt, P.C. Verpoort, R. Anantharaman, C. Bauer, F. Beck, T. Longden, S. Roussanaly, On the cost competitiveness of blue and green hydrogen, Joule 8 (1) (2024) 104-128. [4] D. Jang, J. Kim, D. Kim, W.B. Han, S. Kang, Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies, Energy Convers. Manag. 258 (2022) 115499. [5] P. Quaino, F. Juarez, E. Santos, W. Schmickler, Volcano plots in hydrogen electrocatalysis - uses and abuses, Beilstein J. Nanotechnol. 5 (2014) 846-854. [6] S.I. Tanaka, N. Hirose, T. Tanaki, Y.H. Ogata, Effect of Ni-Al precursor alloy on the catalytic activity for a raney-Ni cathode, J. Electrochem. Soc. 147 (6) (2000) 2242. [7] Q.X. Zhou, Q. Hao, Y.X. Li, J.H. Yu, C.X. Xu, H. Liu, S.S. Yan, Free-standing trimodal porous NiZn intermetallic and Ni heterojunction as highly efficient hydrogen evolution electrocatalyst in the alkaline electrolyte, Nano Energy 89 (2021) 106402. [8] I.A. Raj, Nickel-based, binary-composite electrocatalysts for the cathodes in the energy-efficient industrial production of hydrogen from alkaline-water electrolytic cells, J. Mater. Sci. 28 (16) (1993) 4375-4382. [9] G.S. Ma, Y.P. Zheng, J.Y. Zhang, J.S. Yan, P. Guo, W. Yang, R.D. Chen, J.H. Yuan, L. Cui, A.Y. Wang, Enhancing hydrogen evolution reaction by synergistically coupling NiMo alloy with Mo on Ni foam, J. Alloys Compd. 933 (2023) 167855. [10] J. Cao, H.C. Li, J.X. Pu, S.C. Zeng, L.M. Liu, L. Zhang, F.H. Luo, L. Ma, K.C. Zhou, Q.P. Wei, Hierarchical NiMo alloy microtubes on nickel foam as an efficient electrocatalyst for hydrogen evolution reaction, Int. J. Hydrog. Energy 44 (45) (2019) 24712-24718. [11] A. Nairan, P.C. Zou, C.W. Liang, J.X. Liu, D. Wu, P. Liu, C. Yang, NiMo solid solution nanowire array electrodes for highly efficient hydrogen evolution reaction, Adv. Funct. Mater. 29 (44) (2019) 1903747. [12] Y.M. An, X. Long, M. Ma, J. Hu, H. Lin, D. Zhou, Z. Xing, B.L. Huang, S.H. Yang, One-step controllable synthesis of catalytic Ni4Mo/MoOx/Cu nanointerfaces for highly efficient water reduction, Adv. Energy Mater. 9 (41) (2019) 1901454. [13] L.Y. Xiao, T.T. Yang, C.Q. Cheng, X.W. Du, Y. Zhao, Z.W. Liu, X.R. Zhao, J.T. Zhang, M. Zhou, C.Y. Han, S.Z. Liu, Y.S. Zhao, Y.H. Yang, H. Liu, C.K. Dong, J. Yang, Coupled compressive-tensile stains boosting both activity and durability of NiMo electrode for alkaline water/seawater hydrogen evolution at high current densities, Chem. Eng. J. 485 (2024) 150044. [14] X.Q. Wang, R. Su, H. Aslan, J. Kibsgaard, S. Wendt, L.H. Meng, M.D. Dong, Y.D. Huang, F. Besenbacher, Tweaking the composition of NiMoZn alloy electrocatalyst for enhanced hydrogen evolution reaction performance, Nano Energy 12 (2015) 9-18. [15] J. Balej, J. Divisek, H. Schmitz, J. Mergel, Preparation and properties of Raney nickel electrodes on Ni-Zn base for H2 and O2 evolution from alkaline solutions Part II: Leaching (activation) of the Ni-Zn electrodeposits in concentrated KOH solutions and H2 and O2 overvoltage on activated Ni-Zn Raney electrodes, J. Appl. Electrochem. 22 (8) (1992) 711-716. [16] H. Cheema, J. Watson, P.S. Shinde, R.R. Rodrigues, S.L. Pan, J.H. Delcamp, Precious metal-free solar-to-fuel generation: SSM-DSCs powering water splitting with NanoCOT and NiMoZn electrocatalysts, Chem. Commun. 56 (10) (2020) 1569-1572. [17] S.K. Choi, G.X. Piao, W. Choi, H. Park, Highly efficient hydrogen production using p-Si wire arrays and NiMoZn heterojunction photocathodes, Appl. Catal. B Environ. 217 (2017) 615-621. [18] M.M. Momeni, M. Akbarnia, Photo-assisted electrodeposition of NiMoZn on hematite nanostructures and their photoelectrochemical application as photoanode for corrosion protection of stainless steel, J. Alloys Compd. 856 (2021) 158254. [19] H.Y. Yang, M. Driess, P.W. Menezes, Self-supported electrocatalysts for practical water electrolysis, Adv. Energy Mater. 11 (39) (2021) 2102074. [20] Y.X. Wen, Y. Zhao, Z.Y. Zhang, Y.C. Wu, H. Zhu, K. Xu, Y. Liu, Electrodeposition of NiMo alloys and composite coatings: a review and future directions, J. Manuf. Process. 119 (2024) 929-951. [21] X.Y. Liu, J.B. Zang, S.Y. Zhou, P.F. Tian, H.W. Gao, S.W. Song, R.S. Li, Y.H. Wang, Electroless deposition of Ni-Cu-P on a self-supporting graphene with enhanced hydrogen evolution reaction activity, Int. J. Hydrog. Energy 45 (27) (2020) 13985-13993. [22] D. Chade, L. Berlouis, D. Infield, A. Cruden, P.T. Nielsen, T. Mathiesen, Evaluation of Raney nickel electrodes prepared by atmospheric plasma spraying for alkaline water electrolysers, Int. J. Hydrog. Energy 38 (34) (2013) 14380-14390. [23] S.N. Hasan, M. Xu, E. Asselin, Electrodeposition of metallic molybdenum and its alloys-a review, Can. Metall. Q. 58 (1) (2019) 1-18. [24] K. Murase, M. Ogawa, T. Hirato, Y. Awakura, Design of acidic Ni-Mo alloy plating baths using a set of apparent equilibrium constants, J. Electrochem. Soc. 151 (12) (2004) C798. [25] E. Beltowska-Lehman, A. Bigos, P. Indyka, M. Kot, Electrodeposition and characterisation of nanocrystalline Ni-Mo coatings, Surf. Coat. Technol. 211 (2012) 67-71. [26] M.S. Chandrasekar, M. Pushpavanam, Pulse and pulse reverse plating: Conceptual, advantages and applications, Electrochim. Acta 53 (8) (2008) 3313-3322. [27] F. Ganci, B. Buccheri, B. Patella, E. Cannata, G. Aiello, P. Mandin, R. Inguanta, Electrodeposited nickel-zinc alloy nanostructured electrodes for alkaline electrolyzer, Int. J. Hydrog. Energy 47 (21) (2022) 11302-11315. [28] H.B. Wang, B.R. Ye, C. Li, T. Tang, S.P. Li, S.J. Shi, C.Y. Wu, Y.Q. Zhang, Vertical graphene-supported NiMo nanoparticles as efficient electrocatalysts for hydrogen evolution reaction under alkaline conditions, Materials (Basel) 16 (8) (2023) 3171. [29] B. Wen, X. Zhao, Q.L. Dong, B. Li, X. Lyu, Gradient composition design of FeCoCrMnNi high entropy alloys: an efficient and stable electrocatalyst for water splitting, J. Power Sources 627 (2025) 235804. [30] K.S.K.J. Reddy, L.P. Pavithra Chokkakula, S.R. Dey, Strategies to engineer FeCoNiCuZn high entropy alloy composition through aqueous electrochemical deposition, Electrochim. Acta 453 (2023) 142350. [31] W.N. Yin, Y.T. Cai, L.B. Xie, H. Huang, E.C. Zhu, J.N. Pan, J.Q. Bu, H. Chen, Y. Yuan, Z.C. Zhuang, L.L. Wang, Revisited electrochemical gas evolution reactions from the perspective of gas bubbles, Nano Res. 16 (4) (2023) 4381-4398. [32] A. Angulo, P. van der Linde, H. Gardeniers, M. Modestino, D. Fernandez Rivas, Influence of bubbles on the energy conversion efficiency of electrochemical reactors, Joule 4 (3) (2020) 555-579. [33] K. Zouhri, S.Y. Lee, Evaluation and optimization of the alkaline water electrolysis ohmic polarization: Exergy study, Int. J. Hydrog. Energy 41 (18) (2016) 7253-7263. [34] L. Liu, Y. Chen, J.J. Chen, G.X. Tang, Z.Y. Xiao, S.Q. Fan, Self-supporting superaerophobic electrode with Ni-Mo anchoring on Cu nanosheet arrays derived from copper foam for hydrogen evolution, Ind. Eng. Chem. Res. 62 (41) (2023) 16686-16695. [35] G. Tsekouras, R. Terrett, Z.Y. Yu, Z.X. Cheng, G.F. Swiegers, T. Tsuzuki, R. Stranger, R.J. Pace, Insights into the phenomenon of ‘bubble-free’ electrocatalytic oxygen evolution from water, Sustainable Energy Fuels 5 (3) (2021) 808-819. [36] P. Tiwari, G. Tsekouras, K. Wagner, G.F. Swiegers, G.G. Wallace, A new class of bubble-free water electrolyzer that is intrinsically highly efficient, Int. J. Hydrog. Energy 44 (42) (2019) 23568-23579. [37] M. Koj, J.C. Qian, T. Turek, Novel alkaline water electrolysis with nickel-iron gas diffusion electrode for oxygen evolution, Int. J. Hydrog. Energy 44 (57) (2019) 29862-29875. [38] M. Lekka, R. Offoiach, A. Lanzutti, M.Z. Mughal, M. Sebastiani, E. Bemporad, L. Fedrizzi, Ni-B electrodeposits with low B content: Effect of DMAB concentration on the internal stresses and the electrochemical behaviour, Surf. Coat. Technol. 344 (2018) 190-196. [39] X.T. Yu, M.Y. Wang, Z. Wang, X.Z. Gong, Z.C. Guo, Time-dependent surface structure evolution of NiMo films electrodeposited under super gravity field as electrocatalyst for hydrogen evolution reaction, J. Phys. Chem. C 121 (31) (2017) 16792-16802. [40] Z.B. Feng, D.G. Li, L. Wang, Q. Sun, P. Lu, P.F. Xing, M.Z. An, In situ grown nanosheet NiZn alloy on Ni foam for high performance hydrazine electrooxidation, Electrochim. Acta 304 (2019) 275-281. [41] M.C. Biesinger, B.P. Payne, L.W.M. Lau, A. Gerson, R.S.C. Smart, X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems, Surf. Interface Anal. 41 (4) (2009) 324-332. [42] W. Gruenert, A.Y. Stakheev, R. Feldhaus, K. Anders, E.S. Shpiro, K.M. Minachev, Analysis of molybdenum(3d) XPS spectra of supported molybdenum catalysts: an alternative approach, J. Phys. Chem. 95 (3) (1991) 1323-1328. [43] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Minnesota: Physical Electronics Inc., 1995. [44] M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn, Appl. Surf. Sci. 257 (3) (2010) 887-898. [45] X.G. Yu, C. Liu, B. Wang, J. Zhao, G.M. Li, H.W. Jing, X.J. Cui, Efficient and stable NiMo alloy nanoparticles on ZSM-5 for alkene hydrosilylation, J. Organomet. Chem. 1019 (2024) 123279. [46] P. Nash, Y.Y. Pan, The Ni-Zn (nickel-zinc) system, J. Phase Equilib. 8 (5) (1987) 422-430. [47] M. Gong, D.Y. Wang, C.C. Chen, B.J. Hwang, H.J. Dai, A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction, Nano Res. 9 (1) (2016) 28-46. [48] K.K. Turaczy, W.J. Liao, H.S. Mou, N.N. Nichols, P. Liu, J.G. Chen, Correlating experimentally determined hydrogen binding energy with hydrogen evolution activity over metal monolayers on molybdenum nitride, ACS Catal. 13 (21) (2023) 14268-14276. [49] F.Z. Xie, X.W. Chu, H.R. Hu, M.H. Qiao, S.R. Yan, Y.L. Zhu, H.Y. He, K.N. Fan, H.X. Li, B.N. Zong, X.X. Zhang, Characterization and catalytic properties of Sn-modified rapidly quenched skeletal Ni catalysts in aqueous-phase reforming of ethylene glycol, J. Catal. 241 (1) (2006) 211-220. [50] B.W. Hoffer, E. Crezee, F. Devred, P.R.M. Mooijman, W.G. Sloof, P.J. Kooyman, A.D. van Langeveld, F. Kapteijn, J.A. Moulijn, The role of the active phase of Raney-type Ni catalysts in the selective hydrogenation of d-glucose to d-sorbitol, Appl. Catal. A Gen. 253 (2) (2003) 437-452. [51] F.X. Bao, E. Kemppainen, I. Dorbandt, R. Bors, F.X. Xi, R. Schlatmann, R. van de Krol, S. Calnan, Understanding the hydrogen evolution reaction kinetics of electrodeposited nickel-molybdenum in acidic, near-neutral, and alkaline conditions, ChemElectroChem 8 (1) (2021) 195-208. [52] C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction, J. Am. Chem. Soc. 135 (45) (2013) 16977-16987. [53] A. Talebi, G. Barati Darband, Ultra-fast one-step electrochemical synthesize of Ni-Mn-P as an active and stable electrocatalyst for green hydrogen production, Fuel 397 (2025) 135427. [54] B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Determination of effective capacitance and film thickness from constant-phase-element parameters, Electrochim. Acta 55 (21) (2010) 6218-6227. [55] R. Abedi, G. Barati Darband, Interfacial surface engineering of Co-Mn-P ultrathin nanosheets on Ni-Co hierarchical nanostructure for boosting electrochemical active sites in overall water splitting, J. Power Sources 641 (2025) 236840. [56] J. Kwon, S. Choi, C. Park, H. Han, T. Song, Critical challenges and opportunities for the commercialization of alkaline electrolysis: high current density, stability, and safety, Mater. Chem. Front. 8 (1) (2024) 41-81. [57] A. Hodges, A.L. Hoang, G. Tsekouras, K. Wagner, C.Y. Lee, G.F. Swiegers, G.G. Wallace, A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen, Nat. Commun. 13 (1) (2022) 1304. [58] H.G. Xu, X.Y. Zhang, Y.L. Ding, H.Q. Fu, R. Wang, F.X. Mao, P.F. Liu, H.G. Yang, Rational design of hydrogen evolution reaction electrocatalysts for commercial alkaline water electrolysis, Small Struct. 4 (8) (2023) 2200404. [59] S.M. Gong, Y. Meng, Z.Y. Jin, H.Y. Hsu, M.S. Du, F. Liu, Recent progress on the stability of electrocatalysts under high current densities toward industrial water splitting, ACS Catal. 14 (19) (2024) 14399-14435. [60] W. Weng, W.Z. Zhang, T.H. Lei, W. Tan, X.P. Chi, S.P. Zhong, Grafting nickel electrode with self-supporting semispherical NiRe particles for stably large-current alkaline hydrogen evolution reaction, J. Power Sources 614 (2024) 235007. [61] J.W. Li, Y.P. Wang, C.Z. Chen, X.Y. Cao, L.C. Li, Y.H. Xu, R.Y. Zhang, J.L. Chen, M.S. Lu, D.Y. Min, G.F. Qian, A high-efficiency urea electrolysis catalyst: Sulfur-doped lignin-derived carbon-encapsulated NiCo@MoO2 with triphasic interface and superhydrophilic/superaerophobic surfaces, Chem. Eng. J. 522 (2025) 167733. |
| [1] | Yilun Dong, Kang Xue, Zexing He, Chongjun Li, Ruijie Gao, Zhenfeng Huang, Chengxiang Shi, Xiangwen Zhang, Lun Pan, Jijun Zou. Efficient hydrogen evolution from Amberlyst-15 mediated hydrolysis of ammonia borane under mild conditions [J]. Chinese Journal of Chemical Engineering, 2025, 83(7): 217-228. |
| [2] | Bo Pan, Muneeb Ul Hassan Naseer, Hao Du, Shaona Wang, Yeqing Lyu, Biao Liu, Haixu Wang, Lanjie Li. Separation and recovery of V/W/Na from waste SCR catalyst leaching solution using membrane electrolysis—Ion morphology pretreatment solvent extraction-stripping method [J]. Chinese Journal of Chemical Engineering, 2025, 82(6): 153-164. |
| [3] | Shuaishuai Zhang, Qingwen Luo, Xinan Sun, Lin Chi, Peng Sun, Lianke Zhang. Facile synthesis copper-modified titania (Cu/TiO2) nanoparticles for high-efficiency Congo red adsorption [J]. Chinese Journal of Chemical Engineering, 2025, 81(5): 87-94. |
| [4] | Cibin Wang, Kangrui Nie, Zhiwei Zhao, Yan Xue, Tong Zhao, Fuming Miao, Youzhi Liu, Weizhou Jiao. Preparation of Co-MnOx/GAC catalyst by high-gravity technology and its mechanism for synergistic catalytic ozone degradation of phenol [J]. Chinese Journal of Chemical Engineering, 2025, 81(5): 208-218. |
| [5] | Xing Yun, Kewen Zhang, Zhaojun Chu, Beitao Liu, Yan Kou, Xigao Jian, Zhihuan Weng. Effect of curing temperature of phthalonitrile resin on the properties of resultant hierarchical porous carbon [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 45-52. |
| [6] | Farzin Sheikh, Hammad Hussain, Muhammad Yasin Naz, Bilal Shoukat, Yasin Khan, Muhammad Shoaib. Effect of sodium zeolite mixed metal oxide catalysts on catalytic conversion of mixed-density plastic into carbon nanotubes and hydrogen fuel [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 196-204. |
| [7] | Wei Cheng, Huilin Wen, Xiaoqiang Chen, Shaobin Zhang, Ziyi Yu. Fluorosurfactants and their application in droplet microreactors: An overview [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 314-326. |
| [8] | Liming Zhou, Kejing Wu, Qiang Hu, Houfang Lu, Bin Liang. Preparation of anodic catalysts via in situ exsolution of Pt nanoparticles for a methane oxidation enhanced SOEC process [J]. Chinese Journal of Chemical Engineering, 2025, 86(10): 13-24. |
| [9] | Guangzhong Cao, Kaichen Zhang, Xiao Liu, Shiyi Zhang, Chenxiao Jiang, Tongwen Xu. Electrodialysis and electrolysis for efficient and sustainable recycling of spent lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2025, 86(10): 45-63. |
| [10] | Shuaishuai Zhang, Xinan Sun, Qingwen Luo, Lin Chi, Peng Sun, Lianke Zhang. The Ce-modified biochar for efficient removal of methylene blue dye: Kinetics, isotherms and reusability studies [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 57-65. |
| [11] | Qiannan Wang, Aaron S. Pittman, Yan Cao. High-performance red mud as an electrocatalyst for nitrate reduction toward ammonia synthesis [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 195-202. |
| [12] | Hongmei Wu, Xinyu Liu, Yu Guo. Preparation of a zeolite-palladium composite membrane for hydrogen separation: Influence of zeolite film on membrane stability [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 44-52. |
| [13] | Yumiao Lu, Weilu Ding, Kun Li, Yanlei Wang, Bobo Cao, Ruirui He, Hongyan He. Direct observation of ordered-disordered structural transition of MoS2-confined ionic liquids [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 126-132. |
| [14] | Zhendong Wang, Bofeng Zhang, Guozhu Liu, Xiangwen Zhang. Thermal stable Pt clusters anchored by K/TiO2-Al2O3 for efficient cycloalkane dehydrogenation [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 187-198. |
| [15] | Hong-Qiang Fan, Fei Li, Hong-Xing Zheng, Wu-ji Pan, Mei-Zhen Wu, Yashar Behnamian, Ju-Bo Peng, Dong-Hai Lin. Multiple factors influencing high-purity indium electrolytic refining [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 148-160. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010102001993号 
