[1] M. Ram, J.C. Osorio-Aravena, A. Aghahosseini, D. Bogdanov, C. Breyer, Job creation during a climate compliant global energy transition across the power, heat, transport, and desalination sectors by 2050, Energy 238 (2022) 121690. [2] T. Wilberforce, A.G. Olabi, E.T. Sayed, K. Elsaid, M.A. Abdelkareem, Progress in carbon capture technologies, Sci. Total Environ. 761 (2021) 143203. [3] A.G. Olabi, The 3rd international conference on sustainable energy and environmental protection SEEP 2009-Guest Editor’s Introduction, Energy 35 (12) (2010) 4508-4509. [4] S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature 488 (7411) (2012) 294-303. [5] K. Solaun, E. Cerda, Climate change impacts on renewable energy generation. A review of quantitative projections, Renew. Sustain. Energy Rev. 116 (2019) 109415. [6] T.M. Gur, Carbon dioxide emissions, capture, storage and utilization: review of materials, processes and technologies, Prog. Energy Combust. Sci. 89 (2022) 100965. [7] M.S. Dresselhaus, I.L. Thomas, Alternative energy technologies, Nature 414 (6861) (2001) 332-337. [8] G.R. Ren, J.F. Liu, J. Wan, Y.F. Guo, D.R. Yu, Overview of wind power intermittency: impacts, measurements, and mitigation solutions, Appl. Energy 204 (2017) 47-65. [9] G.L. Soloveichik, Battery technologies for large-scale stationary energy storage, Annu. Rev. Chem. Biomol. Eng. 2 (2011) 503-527. [10] M. Muddasar, A. Beaucamp, M. Culebras, M.N. Collins, High performance all lignin derived supercapacitors for energy storage applications, Mater. Today Sustain. 26 (2024) 100767. [11] A.C. Mendhe, A. Kore, S.D. Dhas, Y. Kim, R. Batool, A. Ghazal, D. Kim, High-performance supercapacitor electrodes: hierarchical integration of bimetallic structures incorporating silver and copper phosphates with a 3D fernlike stellar dendritic architecture, Chem. Eng. J. 489 (2024) 151168. [12] D. Gao, Z.L. Luo, C.H. Liu, S.S. Fan, A survey of hybrid energy devices based on supercapacitors, Green Energy Environ. 8 (4) (2023) 972-988. [13] W. Guo, Y. Zhang, X.X. Lei, S. Wang, An effective strategy of constructing multi-metallic oxides of ZnO/CoNiO2/CoO/C microflowers for improved supercapacitive performance, Chin. J. Chem. Eng. 67 (2024) 1-8. [14] F.Y. Hu, T.P. Zhang, J.Y. Wang, C. Liu, S.M. Li, S. Hu, X.G. Jian, Simple fabrication of high-efficiency N, O, F, P-containing electrodes through host-guest doping for high-performance supercapacitors, ACS Sustainable Chem. Eng. 6 (11) (2018) 15764-15772. [15] J. Du, A.B. Chen, S.L. Hou, X.Q. Gao, Self-deposition for mesoporous carbon nanosheet with supercapacitor application, Chin. J. Chem. Eng. 55 (2023) 34-40. [16] M. Minakshi, K. Wickramaarachchi, Electrochemical aspects of supercapacitors in perspective: from electrochemical configurations to electrode materials processing, Prog. Solid State Chem. 69 (2023) 100390. [17] S. Gadipelli, H.A. Patel, Z.X. Guo, An ultrahigh pore volume drives up the amine stability and cyclic CO2 capacity of a solid-Amine@Carbon sorbent, Adv. Mater. 27 (33) (2015) 4903-4909. [18] X.M. Li, L.F. Jiang, C. Zhou, J.P. Liu, H.B. Zeng, Integrating large specific surface area and high conductivity in hydrogenated NiCo2O4 double-shell hollow spheres to improve supercapacitors, NPG Asia Mater. 7 (3) (2015) e165. [19] L. Hao, X.L. Li, L.J. Zhi, Carbonaceous electrode materials for supercapacitors, Adv. Mater. 25 (28) (2013) 3899-3904. [20] A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, Carbon-based composite materials for supercapacitor electrodes: a review, J. Mater. Chem. A 5 (25) (2017) 12653-12672. [21] C. He, G.J. Yang, Z.L. Liu, Q. Zhang, J.X. Chen, H.Q. Yang, D. Chen, P. Li, K.M. Liu, S.J. He, Capacitance performance of N/O Co-doped hierarchical porous carbon nanosheets synthesized via “one stone for three birds” strategy, Colloids Surf. A Physicochem. Eng. Aspects 694 (2024) 134167. [22] Z.H. Weng, K.W. Zhang, Y. Qi, T.P. Zhang, M. Xia, F.Y. Hu, S.H. Zhang, C. Liu, J.Y. Wang, X.G. Jian, Scalable fabrication of heteroatom-doped versatile hierarchical porous carbons with an all-in-one phthalonitrile precursor and their applications, Carbon 159 (2020) 495-503. [23] M.J. Xie, H. Meng, J. Chen, Y. Zhang, C. Du, L. Wan, Y.C. Chen, High-volumetric supercapacitor performance of ordered mesoporous carbon electrodes enabled by the faradaic-active nitrogen doping and decrease of microporosity, ACS Appl. Energy Mater. 4 (2) (2021) 1840-1850. [24] Y. Liu, Z.R. Wang, W. Teng, H.W. Zhu, J.X. Wang, A.A. Elzatahry, D. Al-Dahyan, W. Li, Y.H. Deng, D.Y. Zhao, A template-catalyzed in situ polymerization and co-assembly strategy for rich nitrogen-doped mesoporous carbon, J. Mater. Chem. A 6 (7) (2018) 3162-3170. [25] B.L. Chen, D.L. Wu, T. Wang, F. Yuan, D.Z. Jia, Rapid preparation of porous carbon by flame burning carbonization method for supercapacitor, Chem. Eng. J. 462 (2023) 142163. [26] L. Wan, R. Xiao, J.X. Liu, Y. Zhang, J. Chen, C. Du, M.J. Xie, A novel strategy to prepare N, S-codoped porous carbons derived from barley with high surface area for supercapacitors, Appl. Surf. Sci. 518 (2020) 146265. [27] T. Lv, X.F. Wang, Y. Zhang, X.M. Yang, Nitrogen-doped cellulose-derived porous carbon fibers for high mass-loading aqueous supercapacitors, ChemSusChem 17 (8) (2024) e202301500. [28] L.N. Ma, W. Zhang, R.J. Zhang, H.J. Niu, Q. Yang, F. Li, M. Zhou, L.X. Zhang, Y.D. Huang, N, O-Doped hierarchical Meso/Microporous carbon frameworks enable efficient Carbon-Based supercapacitor, Appl. Surf. Sci. 626 (2023) 157148. [29] R.T. Wang, J.W. Lang, X.B. Yan, Effect of surface area and heteroatom of porous carbon materials on electrochemical capacitance in aqueous and organic electrolytes, Sci. China Chem. 57 (11) (2014) 1570-1578. [30] J.L. Zeng, W.H. Xie, H. Zhou, T. Zhao, B.B. Xu, Q.L. Jiang, H. Algadi, Z.Y. Zhou, H.B. Gu, Nitrogen-doped graphite-like carbon derived from phthalonitrile resin with controllable negative magnetoresistance and negative permittivity, Adv. Compos. Hybrid Mater. 6 (2) (2023) 64. [31] S.B. Sastri, T.M. Keller, Phthalonitrile cure reaction with aromatic diamines, J. Polym. Sci. Part A Polym. Chem. 36 (11) (1998) 1885-1890. [32] Y. Hu, Z.H. Weng, Y. Qi, J.Y. Wang, S.H. Zhang, C. Liu, L.S. Zong, X.G. Jian, Self-curing triphenol A-based phthalonitrile resin precursor acts as a flexibilizer and curing agent for phthalonitrile resin, RSC Adv. 8 (57) (2018) 32899-32908. [33] J.S. Zhou, L. Hou, J. Lian, W.B. Cheng, D. Wang, H.Y. Gou, F.M. Gao, Nitrogen-doped highly dense but porous carbon microspheres with ultrahigh volumetric capacitance and rate capability for supercapacitors, J. Mater. Chem. A 7 (2) (2019) 476-485. [34] S.Y. Yu, J. Mahmood, H.J. Noh, J.M. Seo, S.M. Jung, S.H. Shin, Y.K. Im, I.Y. Jeon, J.B. Baek, Direct synthesis of a covalent triazine-based framework from aromatic amides, Angew. Chem. Int. Ed 57 (28) (2018) 8438-8442. [35] S.C. Ji, P. Yuan, J.H. Hu, R. Sun, K. Zeng, G. Yang, A novel curing agent for phthalonitrile monomers: Curing behaviors and properties of the polymer network, Polymer 84 (2016) 365-370. [36] R. Arrigo, M. Havecker, S. Wrabetz, R. Blume, M. Lerch, J. McGregor, E.P. Parrott, J.A. Zeitler, L.F. Gladden, A. Knop-Gericke, R. Schlogl, D.S. Su, Tuning the acid/base properties of nanocarbons by functionalization via amination, J. Am. Chem. Soc. 132 (28) (2010) 9616-9630. [37] M.Y. Jin, Y.F. Zhang, C.J. Yan, Y.B. Fu, Y.H. Guo, X.H. Ma, High-performance ionic liquid-based gel polymer electrolyte incorporating anion-trapping boron sites for all-solid-state supercapacitor application, ACS Appl. Mater. Interfaces 10 (46) (2018) 39570-39580. [38] L. Miao, D.Z. Zhu, M.X. Liu, H. Duan, Z.W. Wang, Y.K. Lv, W. Xiong, Q.J. Zhu, L.C. Li, X.L. Chai, L.H. Gan, Cooking carbon with protic salt: nitrogen and sulfur self-doped porous carbon nanosheets for supercapacitors, Chem. Eng. J. 347 (2018) 233-242. [39] D.F. Xu, C.J. Chen, J. Xie, B. Zhang, L. Miao, J. Cai, Y.H. Huang, L.N. Zhang, A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries, Adv. Energy Mater. 6 (6) (2016) 1501929. [40] H.K. Kim, A.R. Kamali, K.C. Roh, K.B. Kim, D.J. Fray, Dual coexisting interconnected graphene nanostructures for high performance supercapacitor applications, Energy Environ. Sci. 9 (7) (2016) 2249-2256. [41] Y. Jiang, F. Wu, Z.Q. Ye, C. Li, Y.X. Zhang, L. Li, M. Xie, R.J. Chen, Fe2VO4 nanoparticles anchored on ordered mesoporous carbon with pseudocapacitive behaviors for efficient sodium storage, Adv. Funct. Mater. 31 (18) (2021) 2009756. [42] P. Voigt, N. Kiriy, K. Jahnichen, B. Voit, Application of biobased monomers in two-component methacrylate resins using reaction monitoring and design-of-experiment analysis, ACS Sustainable Chem. Eng. 12 (5) (2024) 1984-1996. [43] F.Y. Hu, J.Y. Wang, S. Hu, L.F. Li, G. Wang, J.S. Qiu, X.G. Jian, Inherent N, O-containing carbon frameworks as electrode materials for high-performance supercapacitors, Nanoscale 8 (36) (2016) 16323-16331. [44] K.H. Choi, J. Yoo, C.K. Lee, S.Y. Lee, All-inkjet-printed, solid-state flexible supercapacitors on paper, Energy Environ. Sci. 9 (9) (2016) 2812-2821. |