1 Leckner, B., “Fluidized bed combustion: Mixing and pollutant limitation”, Prog. Energy Combust. Sci., 24, 31-61 (1998). 2 Collings, M.E., Mann, M.D., Young, B.C., “Effect of coal rank and circulating fluidized-bed operating parameters on nitrous oxide emissions”, Energy Fuels, 7, 554-558 (1993). 3 Diego, L.F., Londonot, C.A., Wang, X.S., Gibbs, B.M., “Influence of operating parameters on NOx and N2O axial profiles in a circulating fluidized bed combustor”, Fuel, 75, 971-978 (1996). 4 Armesto, L., Boerrigter, H., Bahillo, A., Otero, J., “N2O emissions from fluidised bed combustion: The effect of fuelcharacteristics and operating conditions”, Fuel, 82, 1845-1850 (2003). 5 Svoboda, K., Pohorely, M., “Influence of operating conditions and coal properties on NOx and N2O emissions in pressurized fluidized bed combustion of subbituminous coals”, Fuel, 83,1095-1103 (2004). 6 Valentim, B., Sousa, M.J., Abelha, P., Boavida, D., Gulyurtlu, I., “Combustion studies in a fluidised bed—The link between temperature, NOx and N2O formation, char morphology and coal type”, Int. J. Coal Geol., 67, 191-201 (2006). 7 Tarelho, L.C., Matos, M.A., Pereira, F.A., “Influence of limestone addition on the behaviour of NO and N2O during fluidised bed coal combustion”, Fuel, 85, 967-977 (2006). 8 Lyngfelt, A., Amand, L., Leckner, B., “Reversed air staging—A method for reduction of N2O emissions from fluidized bed combustion of coal”, Fuel, 77, 953-959 (1998). 9 Johnsson, J.E., Amand, L.E., Johansen, K.D., Leckner, B., “Modeling N2O reduction and decomposition in a circulating fluidized bed boiler”, Energy Fuels, 10, 970-979 (1996). 10 Gustavsson, L., Glarborg, P., Leckner, B., “Modeling of chemical reactions in afterburning for the reduction of N2O”, Combust. Flame, 106, 345-358 (1996). 11 Shen, B.X., Mi, T., Liu, D.C., Feng, B., Yao, Q., Winter, F., “N2O emission under fluidized bed combustion condition”, Fuel Process. Technol., 84, 13-21 (2003). 12 Hou, X., Zhang, H., Yang, S., Lu, J., Yue, G., “N2O decomposition over the circulating ashesfrom coal-fired CFB boilers”, Chem. Eng. J., 140, 43-51 (2008). 13 Murakami, T., Suzuki, Y., “New approach to understanding NO emission during bubbling fluidized bed coal combustion: Separation of NO formation and reduction processes in the bed”, Energy Fuels, 23, 1950-1955 (2009). 14 Liu, H., Feng, B., Lu, J., Zhang, G., “Coal property effects on N2O and NOx formation from circulating fluidized bed combustion of coal”, Chem. Eng. Comm., 192, 1482-1489 (2005). 15 Gani, A., Morishita, K., Nishikawa, K., Naruse, I., “Characteristics of co-combustion of low-rank coal with biomass”, Energy Fuels, 19, 1652-1659 (2005). 16 Li, Z., Lu, Q., Na, Y., “N2O and NO emissions from co-firing MSW with coals in pilot scale CFBC”, Fuel Process. Technol., 85, 1539-1549 (2004). 17 Shimizu, T., Toyono, M., “Emissions of NOx and N2O during co-combustion of dried sewage sludge with coal in a circulating fluidized bed combustor”, Fuel, 86, 2308-2315 (2007). 18 Xie, J., Yang, X., Zhang, D., Tong, l., Song, W., Liu, W., “Emissions of SO2, NO and N2O in a circulating fluidized bed combustor during co-firing coal and biomass”, J. Envir. Sci., 19, 109-117 (2007). 19 Zheng, Y., Fan, J., Ma Y., Sun, P., Cen, K., “Computational modeling of tangentially fired boiler (II) NOx emissions”, Chin. J. Chem. Eng., 8 (3), 247-250 (2000). 20 Hiltunen, M., Kilpinen, P., Hupa, M., Lee, Y., “N2O emissions from CFB boilers”, In: Proceedings of the Eleventh international Conference on Fluidized-Bed Combustion, Anthony, E.J., ed., ASME Press, New York (1991). 21 John, P., Willem, L., Mark, E., “The effect of burner scale on NOx emissions from a swirl stabilized pulverized coal burner”, Fuel, 69 (11), 1350-1355 (1990). 22 Sadakata, M., Hirose, Y., “Scaling law for pollutant emission from a combustion furnace”, Fuel, 73 (8), 1338-1342 (1994). 23 Xiang, J., Sun, X., Hu, S., Yu, D., “An experimental research on boiler combustion performance”, Fuel Process. Technol., 68 (2), 139-151 (2000). 24 Gulyurtlu, “A comparison of NOx levels from R&D studies with values measured at different plants”, Fuel, 74 (2), 253-257 (1995). 25 Lu, Y., “Laboratory studies on devolatilization and char oxidation under PFBC conditions (2) Fuel nitrogen conversion to nitrogen oxides”, Energy Fuels, 10, 357-363 (1996). 26 Tullin, C.J., Goel, S., Morihara, A., Sarofim, A.F., Beer, J.M., “NO and N2O formation for coal combustion in a fluidized bed: Effect of carbon conversion and bed temperature”, Energy Fuels, 7, 796-802 (1993). 27 Hayhurst, A.N., Lawrence, A.D., “The amounts of NO, and NO formed in a fluidized bed combustor during the burning of coal volatiles and also of char”, Combust. Flame, 105, 341-357 (1996). 28 Loffler, G., Andahazy, D., Wartha, C., Winter, F., Hofbauer, H., “NOx and N2O formation mechanisms—Detailed chemical kinetic modeling study on a single fuel particle in a laboratory-scale fluidized bed”, Journal of Energy Resources Technology-Transactions of the ASME, 123, 228-235 (2001). 29 Winter, F., Wartha, C., Hofbauer, H., “NO and N2O formation during the combustion of wood, straw, malt waste and peat”, Bioresource Technol., 70, 39-49 (1999). 30 Tullin, C.J., Sarofim, A.F., Beer, J.M., Teare, J.D., “Effect of SO2 and NO on the conversion of fuel nitrogen to N2O and NO in single particle combustion of coal”, Combust. Sci. Tech., 106, 153-166 (1995). 31 Glicksman, L.R., “Scaling relationships for fluidized beds”, Chem. Eng. Sci., 39 (9), 1373-1379 (1984). 32 Glicksman, L.R.,Yule, T.,Dyrness, A., Carson, R., “Scaling the hydrodynamics of fluildized bed combustors with cold models in experimental confirmation”, In: Proceedings of the 1987 Inter. Conf. on Fluidized Bed Combustion, Mustonen, J.P., ed., ASME Press, Boston, Massachusetts, 511-514 (1987). 33 Cen, K.F., Ni, M.J., Luo Z.Y., Yan J.H., Chi R., Fang, M.X., Theory Design and Operation of Circulating Fluidized Bed Boiler, China Electricity Press, China (1998). (in Chinese) |