1 Melillo, J.M., Mcguire, A.D., Kicklighter, D.W., Moore, B., Voros marty, C.J., Schloss, A.L., “Global climate-change and terrestrial net primary production”, Nature, 363, 234-240 (1993). 2 Halmann, M.M., Steinberg, M., Greenhouse Gas Carbon Dioxide Mitigation: Science and Technology, Lewis Publishers, Boca Raton (1999). 3 Park, S.W., Joo, O.S., Jung, K.D., Kim, H., Han, S. H., “Development of ZnO/Al2O3 catalyst for reverse-water-gas-shiftreaction of CAMERE process”, Appl. Catal. A, 211, 81-90 (2001). 4 Maroto, V.M.M., Song, C.S., Soong, Y., Environmental Challenges and Greenhouse Gas Control for Fossil Fuel Utilization in the 21st Century, Kluwer Academic/Plenum Publishers, New York (2002). 5 Song, C., “Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing”, Catal. Today, 115, 2-32 (2006). 6 Song, C.S., Gaffney, A.M., Fujimoto, K., “CO2 conversion and utilization”, ACS Symp. Ser., 809, 2-30 (2002). 7 Ostrovskii, V.E., “Mechanisms of methanol synthesis from hydrogen and carbon oxides at Cu-Zn-containing catalysts in the context of some fundamental problems of heterogeneous catalysis”, Catal. Today, 15,141-160 (2002). 8 Bussche, K.M.V., Froment, G.F., “A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst”, J. Catal., 161, 1-3 (1996). 9 Sun, Q., Zhang, Y.L., Chen, H.Y., Deng, J.F., Wu, D., Chen, S.Y., “A novel process for the preparation of Cu/ZnO and Cu/ZnO/Al2O3 ultrafine catalyst: Structure, surface properties, and activity for methanol synthesis from CO2+H2”, J. Catal., 167, 92-105 (1997). 10 Sahibzada, M., Metalfe, L.S., Chadwick, D., “Methanol synthesis from CO/CO2/H2 over Cu/ZnO/Al2O3 at differential and finite conversions”, J. Catal., 174, 111-118 (1998). 11 Edwards, J.H., “Potential sources of CO2 and the options for its large-scale utilisation now and in the future”, Catal. Today, 23, 59-66 (1995). 12 Twigg, M.V., Catalyst Handbook, Wolfe Publication, London (1989). 13 Joo, O.S., Jung, K.D., Moon, I., Rozovskii, A.Y., Lin, G.I., Han, S.H., Uhm, S.J., “Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction”, Ind. Eng. Chem. Res., 38, 1808-1812 (1999). 14 Joo, O.S., Jung, K.D., “Stability of ZnAl2O4 catalyst for reverse-water-gas-shift reaction”, Bull. Korean Chem. Soc., 24, 86-90 (2003). 15 Roman, M.C., Cazorla, A.D., Linares, S.A., Calinas, M.C., “Carbon dioxide hydrogenation catalyzed by alkaline earth and platinum-based catalysts supported on carbon”, Appl. Catal. A, 116, 187-204 (1994). 16 Kaspar, J., Graziani, M., Rahman, A.H., Trovarelli, A., Vichi, E.J.S., da Silva, E.C., “Carbon dioxide hydrogenation over iron containing catalysts”, Appl. Catal. A, 117, 125-137 (1994). 17 Spencer, M.S., “On the activation energies of the forward and reverse water-gas shift reaction”, Catal. Lett, 32, 9-13 (1995). 18 Chen, C.S., Cheng, W.H., Lin, S.S., “Study of iron-promoted Cu/SiO2 catalyst on high temperature reverse water gas shift reaction”, Appl. Catal. A, 257, 97-106 (2004). 19 Koeppel, R.A., Baiker, A., Wokaun, A., “Copper/zirconia catalysts for the synthesis of methanol from carbon dioxide: Influence of preparation variables on structural and catalytic properties of catalysts”, Appl. Catal. A, 84, 77-79 (1992). 20 Pettigew, D.J., Trimm, D.L., Cant, N.W., “The effects of rare earth oxides on the reverse water-gas-shift reaction on palladium/alumina”, Catal. Lett, 28, 313-315 (1994). 21 Yan, S.R., Jun, K.W., Hong, J.S., Choi, M.J., Lee, K.W., “Promotion effect of Fe-Cu catalyst for the hydrogenation of CO2 and application to slurry reactor”, Appl. Catal. A, 194, 63-70 (2000). 22 Perez-Alonso, F.J., Ojeda, M., Herranz, T., Rojas, S., González- Carballo, J.M., Terreros, P., Fierro, J.L.G., “Carbon dioxide hydrogenation over Fe-Ce catalysts”, Catal. Commun, 9, 1945-1948 (2008). 23 Freund, H.J., Messmer, R.P., “On the bonding and reactivity of CO2 on metal surfaces”, Surf. Sci, 172, 1-3 (1986). 24 Freund, H.J., Behner, H., Bartos, B., Wedler, G., Kahlen-beck, H., Neumann, M., “CO2 adsorption and reaction on Fe(III): An angle resolved photoemission (ARUPS) study”, Surf. Sci, 180, 550 (1987). 25 Choe, S.J., Park, D.H., Huh, D.S., “Adsorption and dissociation reaction of carbon dioxide on Pt and Fe surface: MO- study”, Bull. Korean Chem. Soc., 21, 779-784 (2000). 26 Nassir, M.H., Dwyer, D.J.J., “Sequential carbon oxygen bond cleavage in chemisorption of CO2 on Fe”, Vac. Sci. Technol, 11, 2104-2110 (1993). 27 Qin, S., Zhang, C., Xu, J., Yang, Y., Xiang, H., Li, Y., “Fe-Mo interactions and their influence on Fischer–Tropsch synthesis performance”, Appl. Catal. A, 392, 118-126 (2011). 28 Maiti, G.C., Malessa, R., Baerns, M., “Studies on the reduction of the Fe2O3-MoO3 system and its interaction with synthesis gas (CO+H2)”, Thermochim. Acta, 80, 11-21 (1984). 29 Lin, D., Chen, K. D., Chen, Y., “Study of the Interactions between MoO3 and α-Fe2O3”, J. Solid State Chem, 129, 30-36 (1997). 30 Scott, C.E., Romero, T., Lopero, E., Arruebarrena, M., Betancourt, P., Bolivar, C., Perez-Zurita, M. J., Marcano, P., Goldwasser, J., “Reaction between ruthenium and molybdenum in RuMo/Al2O3 catalysts”, Appl. Catal. A, 125, 71-79 (1995). 31 Erhan Aksoylu, A., Misrli, Z., IÇlsen Onsan, Z., “Interaction between nickel and molybdenum in Ni-Mo/Al2O3 catalysts (I) CO2 methanation and SEM-TEM studies”, Appl. Catal. A, 168, 385-397 (1998). 32 Kaluza, L., Gulkova, D., Vit, Z., Zdrazil, M., “Effect of support type on the magnitude of synergism and promotion in CoMo sulphide hydrodesulphurisation catalyst”, Appl. Catal. A, 324, 30-35 (2007). 33 Chary, K.V.R., Bhaskar, T., Kishan, G., Reddy, K.R., “Characterization and reactivity of molybdenum oxide catalysts supported on niobia”, J Phys. Chem. B, 105, 4392-4398 (2001). 34 Ressler, T., Wienold, J., Jentoft, R. E., “Formation of bronzes during temperature-programmed reduction of MoO3 with hydrogen—An in situ XRD and XAFS study”, Solid State Ionics, 141-142, 243-251 (2001). 35 Bukur, D.B., Okabe, K., Rosynek, M.P., Li, C.P., Wang, D.Y., Rao, K.R.P.M., Huffman, G.P., “Activation studies with a precipitated iron catalyst for Fischer-Tropsch synthesis (I) Characterization studies”, J. Catal., 155, 353-365 (1995). 36 Zhang, H., Shen, J., Ge, X., ”The Reduction behavior of Fe-Mo-O catalysts studied by temperature-programmed reduction combined with in situ Mössbauer spectroscopy and X-ray diffraction”, J. Solid State Chem, 117, 127-135 (1995). 37 Wang, S., Lu, G.Q., “Role of CeO2 in Ni/CeO2-Al2O3 catalysts for carbon dioxide reforming of methane”, Appl. Catal. B, 19, 267-277 (1998). 38 Jozwiak, W.K., Nowosielska, M., Rynkowski, J., “Reforming of methane with carbon dioxide over supported bimetallic catalysts containing Ni and noble metal (I) Characterization and activity of SiO2 supported Ni-Rh catalysts”, Appl. Catal. A, 280, 233-244 (2005). 39 Pawelec, B., Damyanova, S., Arishtirova, K., Fierro, J.L.G., Petrov, L., “Structural and surface features of PtNi catalysts for reforming of methane with CO2”, Appl. Catal. A, 323, 188-201 (2007). 40 Chen, H.Y., “The crystal structure and twinning behavior of ferric molybdate, Fe2(MoO4)3”, Mater. Res. Bull., 14, 1583-1590 (1979). 41 Zhang, H., Shen, J., Ge, X., “The reduction behavior of Fe-Mo-O catalysts studied by temperature-programmed reduction combined with in situ Mössbauer spectroscopy and X-Ray diffraction”, J. Solid State Chem., 117, 127-135 (1995). 42 Korner, H., Linder, H., Welder, G., Kreuzer, H.J., “The effect of carburization and oxygen exposure on the reaction of carbon monoxide on iron films at 573 K under a pressure between 5 and 10 mbar”, Appl. Surface Sci., 18, 361-365 (1984). 43 Benziger, J., Madix, R.J., “The effects of carbon, oxygen, sulfur and potassium adlayers on CO and H2 adsorption on Fe(100)”, Surf. Sci., 94, 119-153 (1980). 44 Vink, T.J., Gijzeman, L.L.J., Geus, J.W., “CO interaction with Fe(100): Effects of carbon and oxygen adlayers on co adsorption isotherms”, Surf. Sci., 150, 14-23 (1985). |