[1] T.C. Ezeji, H.P. Blaschek, Biofuel from butanol: advances in genetic and physiologicalmanipulation of clostridia, BioWorld Eur. 2 (2007) 12-15.[2] Nexant Offices, Biobutanol: the next big biofuel, Chemical Systems with ChemicalStrategies, Nexant, 2009.[3] C. Weber, A. Farwick, F. Benisch, D. Brat, H. Dietz, T. Subtil, E. Boles, Trends andchallenges in the microbial production of lignocellulosic bioalcohol fuels, Appl.Microbiol. Biotechnol. 87 (4) (2010) 1303-1315.[4] D.T. Jones, D.R. Woods, Acetone-butanol fermentation revisited, Microbiol. Rev. 50(4) (1986) 484-534.[5] T.C. Ezeji, N. Qureshi, H.P. Blaschek, Production of acetone butanol (AB) from liquefiedcorn starch, a commercial substrate, using Clostridium beijerinckii coupled withproduct recovery by gas stripping, J. Ind. Microbiol. Biotechnol. 34 (12) (2007)771-777.[6] K. Shetty, G. Paliyath, A. Pometto, R.E. Levin, Food Biotechnology, Second editionTaylor & Francis Group, Boca Raton, Florida, USA, 2005. 525-551.[7] N. Qureshi, X.L. Li, S. Hughes, B.C. Saha, M.A. Cotta, Butanol production from cornfiber xylan using Clostridium acetobutylicum, Biotechnol. Prog. 22 (3) (2006)673-680.[8] N. Qureshi, T.C. Ezeji, Butanol, ‘a superior biofuel’ production from agricultural residues(renewable biomass): recent progress in technology, Biofuels, Bioprod. Biorefin.2 (4) (2008) 319-330.[9] H.S. Lü, M.M. Ren, M.H. Zhang, Y. Chen, Pretreatment of corn stover using supercritical CO2 with water-ethanol as co-solvent, Chin. J. Chem. Eng. 21 (5) (2013)551-557.[10] M.J. Zhang, R.X. Su, W. Qi, R.Y. Du, Z.M. He, Enzymatic hydrolysis of cellulose withdifferent crystallinities studied by means of SEC-MALLS, Chin. J. Chem. Eng. 19 (5)(2011) 773-778.[11] J. Chen, Y.Wang, G. He, H. Zhang, Z. Zhou, Bioconversion of lignocellulose to ethanol,Sci. Silvae Sin. 43 (5) (2007) 99-105.[12] J. Kim, D.E. Block, D.A. Mills, Simultaneous consumption of pentose and hexosesugars: an optimal microbial phenotype for efficient fermentation of lignocellulosicbiomass, Appl. Microbiol. Biotechnol. 88 (5) (2010) 1077-1085.[13] A.E. Kanouni, I. Zerdani, S. Zaafa, M. Znassni, M. Lout, M. Boudouma, The improvementof glucose/xylose fermentation by Clostridium acetobutylicum using calciumcarbonate, World J. Microbiol. Biotechnol. 14 (3) (1998) 431-435.[14] M.H.W. Husemann, E.T. Papoutsakis, Solventogenesis in Clostridium acetobutylicumfermentation related to carboxylic acid and proton concentrations, Biotechnol.Bioeng. 32 (7) (1988) 843-852.[15] C. Ren, Y. Gu, S.Y. Hu, Y.Wu, P.Wang, Y.L. Yang, C. Yang, S. Yang,W.H. Jiang, Identificationand inactivation of pleiotropic regulator CcpA to eliminate glucose repressionof xylose utilization in Clostridium acetobutylicum, Metab. Eng. 12 (5) (2010)446-454.[16] C. Grimmler, C. Held, W. Liebl, A. Ehrenreich, Transcriptional analysis of cataboliterepression in Clostridium acetobutylicum growing on mixtures of d-glucoseand d-xylose, J. Biotechnol. 150 (3) (2010) 315-323.[17] M.D. Servinsky, J.T. Kiel, N.F. Dupuy, C.J. Sund, Transcriptional analysis of differentialcarbohydrate utilization by Clostridium acetobutylicum, Microbiology 156 (11)(2010) 3478-3491.[18] T. Millat, H. Janssen, G.J. Thorn, J.R. King, H. Bahl, R.J. Fischer, O.Wolkenhauer, A shiftin the dominant phenotype governs the pH-induced metabolic switch of Clostridiumacetobutylicum in phosphate-limited continuous cultures, Appl. Microbiol. Biotechnol.97 (14) (2013) 6451-6466.[19] M. Gottwald, G. Gottschalk, The internal pH of Clostridium acetobutylicum and its effecton the shift from acid to solvent formation, Arch. Microbiol. 143 (1) (1985)42-46.[20] D.B. Kell, M.W. Peck, G. Rodger, J.G. Morris, On the permeability to weak acids andbases of the cytoplasmic membrane of Clostridium pasteurianum, Biochem. Biophys.Res. Commun. 99 (1) (1981) 81-88.[21] K. Ounine, H. Petitdemange, G. Raval, R. Gay, Regulation and butanol inhibition of DD-xylose and D D-glucose uptake in Clostridium acetobutylicum, Appl. Environ.Microbiol. 49 (4) (1985) 874-878.[22] I.S. Maddox, E. Steiner, S. Hirsch, S. Wessner, N.A. Gutierrez, J.R. Gapes, K.C. Schuster,The cause of “acid crash” and “acidogenic fermentations” during the batch acetone-butanol-ethanol (ABE-) fermentation process, J. Mol. Microbiol. Biotechnol. 2 (1)(2000) 95-100.[23] J.-P. Pitkänen, A. Aristidou, L. Salusjärvi, L. Ruohonen, M. Penttilä, Metabolic fluxanalysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuousculture, Metab. Eng. 5 (1) (2003) 16-31.[24] E. Boles, S. Müller, F.K. Zimmermann, A multi-layered sensory systemcontrols yeastglycolytic gene expression, Mol. Microbiol. 19 (3) (1996) 641-642.[25] N.Q. Meinander, I. Boels, B. Hahn-Hägerdal, Fermentation of xylose/glucose mixturesby metabolically engineered Saccharomyces cerevisiae strains expressingXYL1 and XYL2 from Pichia stipitis with and without overexpression of TAL1,Bioresour. Technol. 68 (1) (1999) 79-87.[26] M. Bertilsson, J. Andersson, G. Lidén, Modeling simultaneous glucose and xylose uptakein Saccharomyces cerevisiae from kinetics and gene expression of sugar transporters,Bioprocess Biosyst. Eng. 31 (4) (2008) 369-377.[27] M. Bertilsson, K. Olofsson, G. Lidén, Prefermentation improves xylose utilization insimultaneous saccharification and co-fermentation of pretreated spruce, Biotechnol.Biofuels 2 (2009) 8.[28] M.-R. Ricardo, V.G. Krist, S.M. Anne, S. Gürkan, A mathematical model for simultaneoussaccharification and co-fermentation (SSCF) of C6 and C5 sugars, Chin. J.Chem. Eng. 19 (2) (2011) 185-191.[29] P.A.M. Claassen, J.B. van Lier, A.M. Lopez Contreras, E.W.J. van Niel, L. Sijtsma, A.J.M.Stams, S.S. de Vries, R.A. Weusthuis, Utilisation of biomass for the supply of energycarriers, Appl. Microbiol. Biotechnol. 52 (6) (1999) 741-755. |