Chin.J.Chem.Eng. ›› 2015, Vol. 23 ›› Issue (8): 1291-1299.DOI: 10.1016/j.cjche.2015.04.017
• SEPARATION SCIENCE AND ENGINEERING • Previous Articles Next Articles
Shumeng Wang1, Dong Wu1,2, Hongliang Huang1, Qingyuan Yang1, Minman Tong1, Dahuan Liu1, Chongli Zhong1
Received:
2014-11-21
Revised:
2015-02-03
Online:
2015-09-26
Published:
2015-08-28
Contact:
Qingyuan Yang
Supported by:
Supported by the National Key Basic Research Programof China (2013CB733503), the National Natural Science Foundation of China (21136001, 21276009 and 21322603) and the Program for New Century Excellent Talents in University (NCET-12-0755).
Shumeng Wang1, Dong Wu1,2, Hongliang Huang1, Qingyuan Yang1, Minman Tong1, Dahuan Liu1, Chongli Zhong1
通讯作者:
Qingyuan Yang
基金资助:
Supported by the National Key Basic Research Programof China (2013CB733503), the National Natural Science Foundation of China (21136001, 21276009 and 21322603) and the Program for New Century Excellent Talents in University (NCET-12-0755).
Shumeng Wang, Dong Wu, Hongliang Huang, Qingyuan Yang, Minman Tong, Dahuan Liu, Chongli Zhong. Computational exploration of H2S/CH4 mixture separation using acid-functionalized UiO-66(Zr) membrane and composites[J]. Chin.J.Chem.Eng., 2015, 23(8): 1291-1299.
Shumeng Wang, Dong Wu, Hongliang Huang, Qingyuan Yang, Minman Tong, Dahuan Liu, Chongli Zhong. Computational exploration of H2S/CH4 mixture separation using acid-functionalized UiO-66(Zr) membrane and composites[J]. Chinese Journal of Chemical Engineering, 2015, 23(8): 1291-1299.
[1] Y. Belmabkhout, G. DeWeireld, A. Sayari, Amine-bearing mesoporous silica for CO2 and H2S removal from natural gas and biogas, Langmuir 25(2009) 13257-13278. [2] Y. Zhao, B. Jung, L. Ansaloni,W.S. Winston Ho, Multiwalled carbon nanotube mixed matrix membranes containing amines for high pressure CO2/H2 separation, J. Membr. Sci. 459(2014) 233-243. [3] H.P. Hsieh, Inorganic Membranes for Separation and Reaction, Elsevier, Amsterdam, 1996. [4] X.M. Liu, R.B. Lin, J.P. Zhang, X.M. Chen, Low-dimensional porous coordination polymers based on 1,2-bis(4-pyridyl) hydrazine:from structure diversity to ultrahigh CO2/CH4 selectivity, Inorg. Chem. 51(2012) 5686-5692. [5] S.G. Li, J.G. Martinek, J.L. Falconer, R.D. Noble, T.Q. Gardner, High-pressure CO2/CH4 separation using SAPO-34 membrane, Ind. Eng. Chem. Res. 44(2005) 3220-3228. [6] D.Q. Vu, W.J. Koros, S.J. Miller, High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes, Ind. Eng. Chem. Res. 41(2002) 367-380. [7] A. Huang, Y. Chen, Q. Liu, N. Wang, J. Jiang, J. Caro, Synthesis of highly hydrophobic and permselective metal-organic framework Zn(BDC)(TED)0.5 membranes for H2/CO2 separation, J. Membr. Sci. 454(2014) 126-132. [8] H. Guo, G. Zhu, I.J. Hewitt, S. Qiu, Twin copper source growth of metal-organic framework membrane:Cu3(BTC)2 with high permeability and selectivity for recycling H2, J. Am. Chem. Soc. 131(2009) 1646-1647. [9] Y. Liu, E. Hu, E.A. Khan, Z. Lai, Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture, J. Membr. Sci. 353(2010) 36-40. [10] W.Wang, X. Dong, J. Nan,W. Jin, Z. Hu, Y. Chen, J. Jiang, A homochiral metal-organic framework membrane for enantioselective separation, Chem. Commun. 48(2012) 7022-7024. [11] A. Huang, Y. Chen, N.Wang, Z. Hu, J. Jiang, J. Caro, A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2/CO2 separation, Chem. Commun. 48(2012) 10981-10983. [12] S. Keskin, D.S. Sholl, Screening metal-organic framework materials for membranebased methane/carbon dioxide separations, J. Phys. Chem. C 111(2007) 14055-14059. [13] C. Chmelik, J. Baten, R. Krishna, Hindering effects in diffusion of CO2/CH4 mixtures in ZIF-8 crystals, J. Membr. Sci. 397-398(2012) 87-91. [14] T.Watanabe, S. Keskin, S. Nair, D.S. Sholl, Computational identification of ametal organic framework for high selectivity membrane-based CO2/CH4 separations:Cu(hfipbb)(H2hfipbb)0.5, Phys. Chem. Chem. Phys. 11(2009) 11389-11394. [15] L.M. Robeson, The upper bound revisited, J. Membr. Sci. 320(2008) 390-400. [16] I. Erucar, S. Keskin, Screening metal-organic framework-based mixed matrix membranes for CO2/CH4 separations, Ind. Eng. Chem. Res. 50(2011) 12606-12616. [17] S. Keskin, D.S. Sholl, Selecting metal organic frameworks as enabling materials in mixed matrix membranes for high efficiency natural gas purification, Energy Environ. Sci. 3(2010) 343-351. [18] I. Erucar, S. Keskin, High CO2 selectivity of an amine-functionalized metal organic framework in adsorption-based and membrane-based gas separation, Ind. Eng. Chem. Res. 52(2013) 3462-3472. [19] G. Yilmaz, S. Keskin, Predicting the performance of zeolite imidazolate framework/polymermixedmatrix membranes for CO2, CH4, and H2 separations using molecular simulations, Ind. Eng. Chem. Res. 51(2012) 14218-14228. [20] R. Babarao, Z. Hu, J. Jiang, Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1:a comparative study from Monte Carlo simulation, Langmuir 23(2007) 659-666. [21] B. Liu, B. Smit, Molecular simulation studies of separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs, J. Phys. Chem. C 114(2010) 8515-8522. [22] L. Hamon, C. Serre, T. Devic, T. Loiseau, F.Millange, G.D.Weireld, Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room temperature, J. Am. Chem. Soc. 131(2009) 8775-8777. [23] X. Peng, D. Cao, Computational screening of porous carbons, zeolites, and metal organic frameworks for desulfurization and decarburization of biogas, natural gas, and flue gas, AIChE J. 59(2013) 2928-2942. [24] S. Vaesen, V. Guillerm, Q. Yang, A.D. Wiersum, B. Marszalek, B. Gil, A. Vimont, M. Daturi, T. Devic, P.L. Llewellyn, C. Serre, G. Maurin, G.D. Weireld, A robust aminofunctionalized titanium(IV) based MOF for improved separation of acid gases, Chem. Commun. 49(2013) 10082-10084. [25] J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A new zirconium inorganic building brick formingmetal organic frameworks with exceptional stability, J. Am. Chem. Soc. 130(2008) 13850-13851. [26] H. Jasuja, J. Zhang, D.S. Sholl, K.S.Walton, Rational tuning ofwater vapor and CO2 adsorption in highly stable Zr-based MOFs, J. Phys. Chem. C 116(2012) 23526-23532. [27] Q. Yang, V. Guillerm, F. Ragon, A.D. Wiersum, P.L. Llewellyn, C. Zhong, T. Devic, C. Serre, G. Maurin, CH4 storage and CO2 capture in highly porous zirconium oxide based metal-organic frameworks, Chem. Commun. 48(2012) 9831-9833. [28] Q. Yang, A.D.Wiersum, H. Jobic, V. Guillerm, C. Serre, P.L. Llewellyn, G. Maurin, Understanding the thermodynamic and kinetic behavior of the CO2/CH4 gas mixture within the porous Zirconium terephthalate UiO-66(Zr):a joint experimental and modeling approach, J. Phys. Chem. C 115(2011) 13768-13774. [29] D. Wu, Q. Yang, C. Zhong, D. Liu, H. Huang, W. Zhang, G. Maurin, Revealing the structure-property relationships of metal-organic frameworks for CO2 capture from flue gas, Langmuir 28(2012) 12094-12099. [30] Q. Yang, S. Vaesen, F. Ragon, A.D.Wiersum, D.Wu, A. Lago, T. Devic, C. Martineau, F. Taulelle, P.L. Llewellyn, H. Jobic, C. Zhong, C. Serre, G.D.Weireld, G. Maurin, A water stable metal-organic framework with optimal features for CO2 capture, Angew. Chem. 125(2013) 1-6. [31] D.Wu, G. Maurin, Q. Yang, C. Serre, H. Jobic, C. Zhong, Computational exploration of a Zr-carboxylate based metal-organic framework as a membrane material for CO2 capture, J. Mater. Chem. A 2(2014) 1657-1661. [32] O.G. Nik, X.Y. Chen, S. Kaliaguine, Functionalized metal organic frameworkpolyimide mixed matrix membranes for CO2/CH4 separation, J. Membr. Sci. 15(2012) 48-61. [33] G. Kamath, N. Lubna, J.J. Potoff, Effect of partial charge parametrization on the fluid phase behavior of hydrogen sulfide, J. Chem. Phys. 123(2005) 124505-124511. [34] M.G. Martin, J.I. Siepmann, Transferable potentials for phase equilibria. 1. Unitedatom description of n-alkanes, J. Phys. Chem. B 102(1998) 2569-2577. [35] S.L. Mayo, B.D. Olafson,W.A. Goddard, DREIDING:a generic force field for molecular simulations, J. Phys. Chem. 94(1990) 8897-8909. [36] A.K. Rappé, C.J. Casewit, K.S. Colwell,W.A. Goddard III,W.M. Skiff, UFF, a full periodic table force field formolecularmechanics andmolecular dynamics simulations, J. Am. Chem. Soc. 114(1992) 10024-10035. [37] Q. Yang, A.D. Wiersum, P.L. Llewellyn, V. Guillerm, C. Serre, G. Maurin, Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading:a computational exploration, Chem. Commun. 47(2011) 9603-9605. [38] H. Huang, W. Zhang, D. Liu, B. Liu, G. Chen, C. Zhong, Effect of temperature on gas adsorption and separation in ZIF-8:a combined experimental and molecular simulation study, Chem. Eng. Sci. 66(2011) 6297-6305. [39] L. Zhang, G. Wu, J. Jiang, Adsorption and diffusion of CO2 and CH4 in zeolitic imidazolate framework-8:effect of structural flexibility, J. Phys. Chem. C 118(2014) 8788-8794. [40] Q. Yang, C. Zhong, Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks, J. Phys. Chem. B 110(2006) 17776-17783. [41] Q. Yang, D. Liu, C. Zhong, J. Li, Development of computational methodologies for metal-organic frameworks and their application in gas separations, Chem. Rev. 113(2013) 8261-8323. [42] W. Smith, T.R. Forester, DL_POLY_2.0:a general-purpose parallel molecular dynamics simulation package, J. Mol. Graphics 14(1996) 136-141. [43] A.I. Skoulidas, D.S. Sholl, R. Krishna, Correlation effects in diffusion of CH4/CF4 mixtures in MFI zeolite:a study linking MD simulations with the Maxwell-Stefan formulation, Langmuir 19(2003) 7977-7988. [44] J.C. Maxwell, Treatise on Electricity and Magnetism, Oxford University Press, London, 1873. [45] A.K. Dalai, E.L. Tollefson, Kinetics and reaction mechanism of catalytic oxidation of low concentrations of hydrogen sulfide in natural gas over activated carbon, Can. J. Chem. Eng. 76(1998) 902-914. [46] C. Cai, Z. Xie, R.H.Worden, G. Hu, L.Wang, H. He, Methane-dominated thermochemical sulphate reduction in the Triassic Feixianguan Formation East Sichuan Basin, China:towards prediction of fatal H2S concentrations, Mar. Pet. Geol. 21(2004) 1265-1279. [47] A. Petersson, A. Wellinger, Biogas upgrading technologies-developments and innovations, Task 37-Energy from Biogas and Landfill Gas, IEA Bioenergy, 2009. [48] N. Gilani, J. Towfighi, A. Rashidi, T. Mohammadi, M.R. Omidkhah, A. Sadeghian, Investigation of H2S separation from H2S/CH4 mixtures using functionalized and non-functionalized vertically aligned carbon nanotube membranes, Appl. Surf. Sci. 270(2013) 115-123. [49] E.S. Peterson, M.L.R. Stone, R. McCaffrey, D.G. Cummings, Mixed-gas separation properties of phosphazene polymer membranes, Sep. Sci. Technol. 28(1993) 423-440. [50] J. Vaughn, W.J. Koros, Effect of the amide bond diamine structure on the CO2, H2S and CH4 transport properties of a series of novel 6FDA-based polyamide-imides for natural gas purification, Macromolecules 45(2012) 7036-7049. [51] S. Sridhar, B. Smitha, S.Mayor, B. Prathab, T.M. Aminabhavi, Gas permeation properties of polyamidemembrane prepared by interfacial polymerization, J. Mater. Sci. 42(2007) 9392-9401. [52] M.P. Chenar, H. Savoji, M. Soltanieh, T. Matsuura, S. Tabe, Removal of hydrogen sulfide from methane using commercial polyphenylene oxide and cardo-type polyimide hollow fiber membranes, Korean J. Chem. Eng. 28(2011) 902-913. [53] W.L. Robb, Thin silicone membranes-their permeation properties and some applications, Ann. N. Y. Acad. Sci. 146(1968) 119-137. |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Jiahao Lu, Zhimeng Wang, Qi Zhang, Cheng Sun, Yanyan Zhou, Sijia Wang, Xiangyun Qiu, Shoudong Xu, Rentian Chen, Tao Wei. The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 80-89. |
[3] | Xinxin Li, Hongwei Shao, Shichao Zhang, Yong Li, Jingjing Gu, Qiang Huang, Jin Ran. Two dimensional MoS2 finding its way towards constructing high-performance alkaline recovery membranes [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 155-164. |
[4] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 205-211. |
[5] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 242-252. |
[6] | Lijuan Zhao, Zhe Tan, Xiaoguang Zhang, Qijun Zhang, Wei Wang, Qiang Deng, Jie Ma, De'an Pan. Research on process modeling and simulation of spent lead paste desulfurization enhanced reactor [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 293-303. |
[7] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 103-111. |
[8] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[9] | Jianhui Zhou, Xin Lai, Jianfeng Hu, Haijie Qi, Shan Liu, Zhengguo Zhang. Design of a graphene oxide@melamine foam/polyaniline@erythritol composite phase change material for thermal energy storage [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 282-290. |
[10] | Huan-Huan Yin, Yin-Lei Han, Xiao Yan, Yi-Xin Guan. Proanthocyanidins prevent tau protein aggregation and disintegrate tau filaments [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 63-71. |
[11] | Chao Yang, Zhelin Su, Yeshuang Wang, Huiling Fan, Meisheng Liang, Zhaohui Chen. Insight into the effect of gel drying temperature on the structure and desulfurization performance of ZnO/SiO2 adsorbents [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 233-241. |
[12] | Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 273-280. |
[13] | Zida Ma, Yuxia Li, Mengmeng Jin, Xiaoqin Liu, Linbing Sun. Fabrication of adsorbents with enhanced CuI stability: Creating a superhydrophobic microenvironment through grafting octadecylamine [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 41-48. |
[14] | Qiaoqiao Liu, Guihong Lin, Jian Zhou, Liangliang Huang, Chang Liu. Hydrogen-bond mediated and concentrate-dependent NaHCO3 crystal morphology in NaHCO3–Na2CO3 aqueous solution: Experiments and computer simulations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 49-58. |
[15] | Tutuk Djoko Kusworo, Monica Yulfarida, Andri Cahyo Kumoro, Dani Puji Utomo. Purification of bioethanol fermentation broth using hydrophilic PVA crosslinked PVDF-GO/TiO2 membrane [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 123-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||