[1] N.W. Ockwig, T.M. Nenoff, Membranes for hydrogen separation, Chem. Rev. 107(2007) 4078-4110.[2] G.Q. Lu, J.C. Diniz da Costa, M. Duke, S. Giessler, R. Socolow, R.H.Williams, T. Kreutz, Inorganic membranes for hydrogen production and purification:a critical review and perspective, J. Colloid Interface Sci. 314(2007) 589-603.[3] S.N. Liu, G.P. Liu,W.Wei, F.J. XiangLi,W.Q. Jin, Ceramic supported PDMS and PEGDA composite membranes for CO2 separation, Chin. J. Chem. Eng. 21(2013) 348-356.[4] G.I. Spijksma, C. Huiskes, N.E. Benes, H. Kruidhof, D.H.A. Blank, V.G. Kessler, H.J.M. Bouwmeester, Microporous zirconia-titania composite membranes derived from diethanolamine-modified precursors, Adv. Mater. 18(2006) 2165-2168.[5] H. Qi, Preparation of composite microporous silicamembranes using TEOS and 1, 2-bis(triethoxysilyl)ethane as precursors for gas separation, Chin. J. Chem. Eng. 19(2011) 404-409.[6] H.L. Castricum, A. Sah, R. Kreiter, D.H.A. Blank, J.F. Ventec, J.E. ten Elshof, Hybrid ceramic nanosieves:stabilizing nanopores with organic links, Chem. Commun. (2008) 1103-1105.[7] R. Igi, T. Yoshioka, Y.H. Ikuhara, Y. Iwamoto, T. Tsuru, Characterization of co-doped silica for improved hydrothermal stability and application to hydrogen separation membranes at high temperatures, J. Am. Ceram. Soc. 91(2008) 2975-2981.[8] M. Kanezashi, M. Asaeda, Hydrogen permeation characteristics and stability of Nidoped silica membranes in steam at high temperature, J. Membr. Sci. 271(2006) 86-93.[9] G.P. Fotou, Y.S. Lin, S.E. Pratsinis, Hydrothermal stability of pure andmodified microporous silica membranes, J. Mater. Sci. 30(1995) 2803-2808.[10] Q. Wei, F.Wang, Z.R. Nie, C.L. Song, Y.L.Wang, Q.Y. Li, Highly hydrothermally stable microporous silica membranes for hydrogen separation, J. Phys. Chem. B 112(2008) 9354-9359.[11] M.C. Duke, J.C. Diniz da Costa, D.D. Do, P.G. Gray, G.Q. Lu, Hydrothermally robustmolecular sieve silica for wet gas separation, Adv. Funct. Mater. 16(2006) 1215-1220.[12] M.C. Duke, J.C. Diniz da Costa, G.Q. Lu,M. Petch, P. Gray, Carbonised template molecular sieve silica membranes in fuel processing systems:permeation, hydrostability and regeneration, J. Membr. Sci. 241(2004) 325-333.[13] R.M. de Vos, W.F. Maier, H. Verweij, Hydrophobic silica membranes for gas separation, J. Membr. Sci. 158(1999) 277-288.[14] M. Kanezashi, M. Sano, T. Yoshioka, T. Tsuru, Extremely thin Pd-silica mixed-matrix membranes with nano-dispersion for improved hydrogen permeability, Chem. Commun. 46(2010) 6171-6173.[15] F. Shibao, B.H. Jeong, Y. Hasegawa, K.I. Sotowa, K. Kusakabe, Gas permeation through metal-loaded yttrium doped zirconia membranes, Sep. Sci. Technol. 39(2004) 1259-1265.[16] Y.F. Gu, B.H. Jeong, K.I. Sotowa, K. Kusakabe, The effect of humidity on the durability of inorganic membranes, J. Chem. Eng. 20(2003) 1079-1084.[17] C.C. Coterillo, T. Yokoo, T. Yoshioka, T. Tsuru,M. Asaeda, Synthesis and characterization of microporous ZrO2 membranes for gas permeation at 200℃, Sep. Sci. Technol. 46(2011) 1224-1230.[18] R. Kreiter, M.D.A. Rietkerk, B.C. Bonekamp, H.M. van Veen, V.G. Kessler, J.F. Vente, Sol-gel routes for microporous zirconia and titania membranes, J. Sol-Gel Sci. Technol. 48(2008) 203-211.[19] H. Qi, J. Han, N.P. Xu, H.J.M. Bouwmeester, Hybrid organic-inorganic microporous membranes with high hydrothermal stability for the separation of carbon dioxide, ChemSusChem 3(2010) 1375-1378.[20] R. Vacassy, C. Guizard, V. Thoraval, L. Cot, Synthesis and characterization ofmicroporous zirconia powders:application in nanofilters and nanofiltration characteristics, J. Membr. Sci. 132(1997) 109-118.[21] G. Štefani?, I.I. Štefani?, S. Musi?, Influence of the synthesis conditions on the properties of hydrous zirconia and the stability of low-temperature t-ZrO2, Mater. Chem. Phys. 65(2000) 197-207.[22] J.P. Zhao,W.H. Fan, D.Wu, Y.H. Sun, Synthesis of highly stabilized zirconia sols from zirconium n-propoxide-diglycol system, J. Non-Cryst. Solids 261(2000) 15-20.[23] L. Shi, K.C. Tin, N.B. Wong, Thermal stability of zirconia membranes, J. Mater. Sci. 34(1999) 3367-3374.[24] G.I. Spijksma, D.H.A. Blank, H.J.M. Bouwmeester, V.G. Kessler, Modification of different zirconium propoxide precursors by diethanolamine. Is there a shelf stability issue for sol-gel applications? Int. J. Mol. Sci. 10(2009) 4977-4989.[25] N. Agoudjil, S. Kermadi, A. Larbot, Synthesis of inorganic membrane by sol-gel process, Desalination 223(2008) 417-424.[26] C.L. Chen, T. Li, S. Cheng, N.P. Xu, C.Y. Mou, Catalytic behavior of alumina-promoted sulfated zirconia supported onmesoporous silica in butane isomerization, Catal. Lett. 78(2002) 1-4.[27] C.L. Shao, H.Y. Guan, Y.C. Liu, J. Gong, N. Yu, X.H. Yang, A novel method for making ZrO2 nanofibres via an electrospinning technique, J. Cryst. Growth 267(2004) 380-384.[28] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, T. Siemieniewska, Reporting physisorption data for gas/solid systems-with special reference to the determination of surface area and porosity (recommendations 1984), Pure Appl. Chem. 57(1985) 603-619.[29] A. Díaz-Parralejo, A. Macías-García, E.M. Cuerda-Correa, R. Caruso, Influence of the type of solvent on the textural evolution of yttria stabilized zirconia powders obtained by the sol-gel method:characterization and study of the fractal dimension, J. Non-Cryst. Solids 351(2005) 2115-2121.[30] M.E. Manríquez, T. López, R. Gómez, J. Navarrete, Preparation of TiO2-ZrO2 mixed oxides with controlled acid-basic properties, J. Mol. Catal. A Chem. 220(2004) 229-237.[31] W.H. Chen, H.H. Ko, A. Sakthivel, S.J. Huang, S.H. Liu, A.Y. Lo, T.C. Tsai, S.B. Liu, A solidstate NMR, FT-IR and TPD study on acid properties of sulfated and metal-promoted zirconia:influence of promoter and sulfation treatment, Catal. Today 116(2006) 111-120.[32] H. Zou, Y.S. Lin, Structural and surface chemical properties of sol-gel derived TiO2-ZrO2 oxides, Appl. Catal. A Gen. 265(2004) 35-42.[33] D. Das, H.K. Mishra, A.K. Dalai, K.M. Parida, Isopropylation of benzene over sulfated ZrO2-TiO2 mixed-oxide catalyst, Appl. Catal. A Gen. 243(2003) 271-284.[34] Y.F. Gu, P. Hacarlioglu, S.T. Oyama, Hydrothermally stable silica-alumina composite membranes for hydrogen separation, J. Membr. Sci. 310(2008) 28-37.[35] H. Imai, H. Morimoto, A. Tominaga, H. Hirashima, Structural changes in sol-gel derived SiO2 and TiO2 films by exposure to water vapor, J. Sol-Gel Sci. Technol. 10(1997) 45-54.[36] M. Kanezashi, K. Yada, T. Yoshioka, T. Tsuru, Design of silica networks for development of highly permeable hydrogen separation membranes with hydrothermal stability, J. Am. Chem. Soc. 131(2009) 414-415.[37] T. Tsuru, R. Igi, M. Kanezashi, T. Yoshioka, S. Fujisaki, Y. Iwamoto, Permeation properties of hydrogen and water vapor through porous silica membranes at high temperatures, AICHE J. 57(2011) 618-629. |