Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (1): 168-174.DOI: 10.1016/j.cjche.2017.07.003
• Chemical Engineering Thermodynamics • Previous Articles Next Articles
Fatemeh Ahmadi, Mohsen Pirdashti, Abbas Ali Rostami
Received:
2017-02-26
Revised:
2017-07-03
Online:
2018-03-01
Published:
2018-01-28
Contact:
Mohsen Pirdashti,E-mail addresses:pirdashti@yahoo.com,pirdashti@shomal.ac.ir
Fatemeh Ahmadi, Mohsen Pirdashti, Abbas Ali Rostami
通讯作者:
Mohsen Pirdashti,E-mail addresses:pirdashti@yahoo.com,pirdashti@shomal.ac.ir
Fatemeh Ahmadi, Mohsen Pirdashti, Abbas Ali Rostami. Density, refractive index and liquid-liquid equilibrium data of polyethylene glycol 3000 + potassium formate + water at different pH values[J]. Chin.J.Chem.Eng., 2018, 26(1): 168-174.
Fatemeh Ahmadi, Mohsen Pirdashti, Abbas Ali Rostami. Density, refractive index and liquid-liquid equilibrium data of polyethylene glycol 3000 + potassium formate + water at different pH values[J]. Chinese Journal of Chemical Engineering, 2018, 26(1): 168-174.
[1] P.A. Albertsson, Aqueous Polymer-phase Systems, Wiley, New-York, 1986. [2] M.W. Beijerinck, Über eine Eigentümlichkeit der löslichen Starke, Centr-Bl. f. Bakter. u, Parasitenk 2(1) (1896) 698-699. [3] P.A. Albertsson, Partition of Cell Particles and Macromolecules, Wiley, New-York, 1986. [4] R. Hu, X. Feng, P. Chen, M. Fu, H. Chen, L. Guo, B. Liu, F. Rapid, Highly efficient extraction and purification of membrane proteins using a microfluidic continuous-flow based aqueous two-phase system, J. Chromatogr. A 1218(1) (2011) 171-177. [5] G.D. Rodrigues, L.D. Teixeira, G.M.D. Ferreira, M.D.H. da Silva, L.H.M. da Silva, R.M.M. de Carvalho, Phase diagrams of aqueous two-phase systems with organic salts and f68 triblock copolymer at different temperatures, J. Chem. Eng. Data 55(9) (2010) 1158-1165. [6] P.A. Rosa, A.M. Azevedo, S. Sommerfeld, W. Backer, M.R. Aires-Barros, Aqueous twophase extraction as a platform in the biomanufacturing industry, economical and environmental sustainability, Biotechnol. Adv. 29(6) (2011) 559-567. [7] I.S.B. do Nascimento, J.S. dos Reis Coimbra, J.P. Martins, L.H.M. da Silva, R.C.F. Bonomo, M.R. Pirozzi, A. Cinquini, Partitioning of glutenin flour of special wheat using aqueous two-phase systems, J. Cereal Sci. 52(2) (2010) 270-274. [8] M. Yavari, G.R. Pazuki, M. Vossoughi, S.A. Mirkhani, A.A. Seifkordi, Partitioning of alkaline protease from Bacillus licheniformis (ATCC 21424) using PEG-K2HPO4 aqueous two-phase system, Fluid Phase Equilib. 337(1) (2013) 1-5. [9] Y. Lu, Selective extraction and purification of papain using polyethylene glycol (PEG 4000)/potassium citrate aqueous two phase, Asian J. Chem. 26(12) (2014) 3483-3488. [10] L. Yang, D. Huo, C. Hou, K. He, F. Lv, H. Fa, X. Luo, Purification of plant-esterase in PEG1000/NaH2PO4 aqueous two-phase system by a two-step extraction, Process Biochem. 45(10) (2010) 1664-1671. [11] Y.M. Lu, Y.Z. Yang, X.D. Zhao, C.B. Xia, Bovine serum albumin partitioning in polyethylene glycol (PEG)/potassium citrate aqueous two-phase systems, Food Bioprod. Process. 88(1) (2010) 40-46. [12] J. Vernau, M.R. Kula, Extraction of proteins from biological raw materials using aqueous PEG-citrate phase system, Biotechnol. Appl. Biochem. 12(4) (1990) 397-404. [13] D. de Araujo Sampaio, L.I. Mafra, C.I. Yamamoto, E.F. de Andrade, M.O. de Souza, M.R. Mafra, F. de Castilhos, Aqueous two-phase (polyethylene glycol + sodium sulfate) system for caffeine extraction:equilibrium diagrams and partitioning study, J. Chem. Thermodyn. 98(1) (2016) 86-94. [14] S.C. Silverio, O. Rodriguez, J.A. Teixeira, E.A. Macedo, The effect of salts on the liquid-liquid phase equilibria of PEG 600 salt aqueous two-phase systems, J. Chem. Eng. Data 58(12) (2013) 3528-3535. [15] K. Wysoczanska, E.A. Macedo, Influence of the molecular mass of PEG on the polymer/salt phase diagrams of aqueous two-phase systems, J. Chem. Eng. Data 61(12) (2016) 4229-4235. [16] E. Fries, J. Klasmeier, Analysis of potassium formate in airport storm water runoff by headspace solid-phase microextraction and gas chromatography-mass spectrometry, J. Chromatogr. A 1216(5) (2009) 879-881. [17] A. Aittomiiki, A. Lahti, Potassium formate as a secondary refrigerant, Int. J. Refrig. 20(4) (1997) 276-282. [18] M.A. Isa, U. Eldemerdash, K. Nasrifar, Evaluation of potassium formate as a potential modifier of TEG for high performance natural gas dehydration process, Chem. Eng. Res. Des. 91(9) (2013) 1731-1738. [19] A. De Lucas, M. Donate, J.F. Rodrlguez, Vapor pressures, densities, and viscosities of the (water + lithium bromide + sodium formate) system and (water + lithium bromide + potassium formate) system, J. Chem. Eng. Data 48(1) (2003) 18-22. [20] B. Basu, S. Jha, M.M.H. Bhuiyan, P. Das, A simple protocol for direct reductive amination of aldehydes and ketones using potassium formate and catalytic palladium acetate, Synlett 14(04) (2003) 555-557. [21] R.D. Patil, Y. Sasson, Selective transfer hydrogenation of phenol to cyclohexanone on supported palladium catalyst using potassium formate as hydrogen source under open atmosphere, Appl. Catal. A Gen. 499(1) (2015) 227-231. [22] Y. Gao, S. Jaenicke, G.K. Chuah, Highly efficient transfer hydrogenation of aldehydes and ketones using potassium formate over AlO(OH)-entrapped ruthenium catalysts, Appl. Catal. A Gen. 484(1) (2014) 51-58. [23] M.T. Zafarani-Moattar, Sh. Hamzehzadeh, Liquid-liquid equilibria of aqueous twophase systems containing polyethylene glycol and sodium succinate or sodium formate, Calphad 29(1) (2005) 1-6. [24] M.T. Zafarini-Moattar, R. Sadeghi, A.A. Hamidi, Liquid-liquid equilibria of an aqueous two-phase system containing polyethylene glycol and sodium citrate experiment and correlation, Fluid Phase Equilib. 219(2) (2004) 149-155. [25] T. Murugesan, M.J. Perumalsamy, Liquid-liquid equilibria of poly(ethylene glycol) 2000+ sodium citrate + water at (25, 30, 35, 40, and 45)℃, J. Chem. Eng. Data 50(4) (2005) 1392-1395. [26] S.C. Silverio, A. Wegrzyn, E. Lladosa, O. Rodrlguez, E.A. Macedo, Effect of aqueous two-phase system constituents in different poly(ethylene glycol)-salt phase diagrams, J. Chem. Eng. Data 57(4) (2012) 1203-1208. [27] E. Lladosa, S.C. Silverio, O.S. Rodrlguez, J.A. Teixeira, E.A. Macedo, (Liquid + liquid) equilibria of polymer-salt aqueous two-phase systems for laccase partitioning, J. Chem. Thermodyn. 55(1) (2012) 166-171. [28] M. Pirdashti, K. Movagharnejad, A.A. Rostami, P. Akbarpour, M. Ketabi, Liquid-liquid equilibrium data, viscosities, densities, conductivities, and refractive indexes of aqueous mixtures of poly(ethylene glycol) with trisodium citrate at different pH, J. Chem. Eng. Data 60(11) (2015) 3423-3429. [29] R. Hatti-Kaul, Methods in Biotechnology:Aqueous Two-phase Systems:Methods and Protocols, Humana Press Inc., Totowa, 2000. [30] M. Jayapal, I. Regupathi, T. Murugesan, Liquid-liquid equilibrium of poly(ethylene glycol) 2000+ potassium citrate + water at (25, 35, and 45)℃, J. Chem. Eng. Data 52(1) (2007) 56-59. [31] D. Othmer, P. Tobias, Liquid-liquid extraction data-the line correlation, Ind. Eng. Chem. 34(6) (1942) 693-696. [32] G.R. Vakili-Nezhaad, M. Mohsen-Nia, V. Taghikhani, M. Beh-poor, M. Aghahosseini, Salting-out effect of NaCl and KCl on the ternary LLE data for the systems of (water + propionic acid + isopropyl methyl ketone) and of (water + propionic acid + isobutyl methyl ketone), J. Chem. Thermodyn. 36(4) (2004) 341-348. [33] D.B. Hand, Dineric distribution, J. Phys. Chem. 34(9) (1930) 1961-2000. [34] Y. Guan, T.H. Lilley, T.E. Treffry, A new excluded volume theory and its application to the coexistence curves of aqueous polymer two-phase systems, Macromolecules 26(15) (1993) 3971-3979. [35] Y. Guan, T.H. Lilley, M.N. Garcla-Lisbona, T.E. Treffry, New approaches to aqueous polymer systems:theory, thermodynamics and applications to biomolecular separations, Pure Appl. Chem. 67(6) (1995) 955-962. [36] M. Gonzalez-Amado, E. Rodil, A. Arce, A. Soto, O. Rodrlguez, The effect of temperature on polyethylene glycol (4000 or 8000)-(sodium or ammonium) sulfate aqueous two phase systems, Fluid Phase Equilib. 428(1) (2016) 95-101. [37] M.K. Shahbazinasab, F. Rahimpour, Liquid-liquid equilibrium data for aqueous two-phase systems containing PPG725 and salts at various pH values, J. Chem. Eng. Data 57(7) (2012) 1867-1874. [38] T.S. Porto, P.A. Pessoa-Filho, B.B. Neto, J.L. Lima Filho, A. Converti, A.L.F. Porto, A. Pessoa, Removal of proteases from Clostridium perfringens fermented broth by aqueous two-phase systems (PEG/citrate), J. Ind. Microbiol. Biotechnol. 34(8) (2007) 547-552. [39] A.R. da Costa, J.S. dos Reis Coimbra, L.A. Ferreira, J.C. Marcos, I.J.B. Santos, M.D. Saldana, J.A.C. Teixeira, Partitioning of bovine lactoferrin in aqueous two-phase system containing poly(ethylene glycol) and sodium citrate, Food Bioprod. Process. 95(1) (2015) 118-124. [40] A. Chakraborty, K. Sen, Impact of pH and temperature on phase diagrams of different aqueous biphasic systems, J. Chromatogr. A 1433(3) (2016) 41-55. [41] R. Sadeghi, B. Jamehbozorg, The salting-out effect and phase separation in aqueous solutions of sodium phosphate salts and poly(propylene glycol), Fluid Phase Equilib. 280(1-2) (2009) 68-75. [42] M.T. Zafarani-Moattar, S. Hamzehzadeh, Effect of pH on the phase separation in the ternary aqueous system containing the hydrophilic ionic liquid 1-butyl-3-methylimidazolium bromide and the kosmotropic salt potassium citrate at T=298.15 K, Fluid Phase Equilib. 304(1-2) (2011) 110-120. [43] M.T. Zafarani-Moattar, A. Salabat, Thermodynamics of magnesium sulfate-polypropylene glycol aqueous two-phase system. Experiment and correlation, Fluid Phase Equilib. 152(1) (1998) 57-65. [44] M. Perumalsamy, T. Murugesan, Phasecompositions,molarmass,andtemperatureeffect on densities, viscosities, and liquid-liquid equilibrium of polyethylene glycol and salt-based aqueous two-phase systems, J. Chem. Eng. Data 54(4) (2009) 1359-1366. [45] S.M. Waziri, B.F. Abu-Sharkh, S.A. Ali, The effect of pH and salt concentration on the coexistence curves of aqueous two-phase systems containing a pH responsive copolymer and polyethylene glycol, Fluid Phase Equilib. 205(2) (2003) 275-290. [46] M. Pirdashti, K. Movagharnejad, S. Curteanu, E.N. Dragoi, F. Rahimpour, Prediction of partition coefficients of guanidine hydrochloride in PEG-phosphate systems using neural networks developed with differential evolution algorithm, J. Ind. Eng. Chem. 27(2) (2015) 268-275. [47] A. Rahmani, A.A. Rostami, M. Pirdashti, P. Mobalegholeslam, Liquid-liquid equilibrium and physical properties of aqueous mixtures of poly(vinyl pyrrolidone) with potassium phosphate at different pH:experiments and modeling, Korean J. Chem. Eng. 34(1) (2017) 1-10. [48] B. Shahrokhi, M. Pirdashti, P. Mobalegholeslam, A.A. Rostami, Liquid-liquid equilibrium and physical properties of aqueous mixtures of poly(ethylene glycol) with zinc sulfate at different pH values:experiment, correlation, and thermodynamic modeling, J. Chem. Eng. Data 62(3) (2017) 1106-1118. [49] M. Pirdashti, K. Movagharnejad, P. Mobalegholeslam, S. Curteanu, F. Leon, Phase equilibrium and physical properties of aqueous mixtures of poly (vinyl pyrrolidone) with trisodium citrate, obtained experimentally and by simulation, J. Mol. Liq. 223(1) (2016) 903-920. |
[1] | Hae-Kyun Park, Dong-Hyuk Park, Bum-Jin Chung. Influence of the electrolyte conductivity on the critical current density and the breakdown voltage [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 169-175. |
[2] | Tinghao Jia, Yunbo Yu, Qing Liu, Yao Yang, Ji-Jun Zou, Xiangwen Zhang, Lun Pan. Theoretical and experimental study on the inhibition of jet fuel oxidation by diarylamine [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 225-232. |
[3] | Xianglin Liu, Minjie Xu, Chenxi Cao, Zixu Yang, Jing Xu. Effects of zinc on χ-Fe5C2 for carbon dioxide hydrogenation to olefins: Insights from experimental and density function theory calculations [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 206-214. |
[4] | Yang Liu, Qiu Han, Guiliang Li, Haibo Lin, Fu Liu, Gang Deng, Dingfeng Lv, Weijie Sun. Purifying chylous plasma by precluding triglyceride via carboxylated polyethersulfone microfiltration membrane [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 130-139. |
[5] | Fenfen You, Qing-Hong Shi. In situ investigation of lysozyme adsorption into polyelectrolyte brushes by quartz crystal microbalance with dissipation [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 106-115. |
[6] | Liuting Zhang, Haijie Yu, Zhiyu Lu, Changhao Zhao, Jiaguang Zheng, Tao Wei, Fuying Wu, Beibei Xiao. The effect of different Co phase structure (FCC/HCP) on the catalytic action towards the hydrogen storage performance of MgH2 [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 343-352. |
[7] | Qingjun Zhang, Pengyuan Shi, Xigang Yuan, Youguang Ma, Aiwu Zeng. Direct carboxylation of thiophene with CO2 in the solvent-free carboxylate-carbonate molten medium: Experimental and mechanistic insights [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 264-282. |
[8] | Wei-Qi Yan, Yi-An Zhu, Xing-Gui Zhou, Wei-Kang Yuan. Rational design of heterogeneous catalysts by breaking and rebuilding scaling relations [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 22-28. |
[9] | Jipeng Li, Huan Xu, Jingqi Wang, Yujun Wang, Diannan Lu, Jichang Liu, Jianzhong Wu. Theoretical insights on the hydration of quinones as catholytes in aqueous redox flow batteries [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 72-78. |
[10] | Feng Liu, Jing Liu, Yu Li, Ruixue Fang. Theoretical study of reduction mechanism of Fe2O3 by H2 during chemical looping combustion [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 175-183. |
[11] | Chengxiang Shi, Jisheng Xu, Lun Pan, Xiangwen Zhang, Ji-Jun Zou. Perspective on synthesis of high-energy-density fuels: From petroleum to coal-based pathway [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 83-91. |
[12] | Sunita Malik, Poonam Jangra Darolia, S. K. Garg, V. K. Sharma. Densities and excess molar volumes of mixtures containing diesel, biodiesel and alkanols at temperatures from 288.15 to 313.15 K [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 198-207. |
[13] | Luchao Jin, Yongming He, Guobing Zhou, Qiuhao Chang, Liangliang Huang, Xingru Wu. Natural gas density under extremely high pressure and high temperature: Comparison of molecular dynamics simulation with corresponding state model [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 2-9. |
[14] | Changjie Lu, Weiqiang Tang, Zijiang Dou, Peng Xie, Xiaofei Xu, Shuangliang Zhao. A reaction density functional theory study of solvent effects on keto-enol tautomerism and isomerization in pyruvic acid [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 10-16. |
[15] | Jie Yang, Alejandro Gallegos, Cheng Lian, Shengwei Deng, Honglai Liu, Jianzhong Wu. Curvature effects on electric-double-layer capacitance [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 145-152. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 145
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||