Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (2): 245-251.DOI: 10.1016/j.cjche.2017.05.012
• Fluid Dynamics and Transport Phenomena • Previous Articles Next Articles
Xiaolai Zhang1, Weixin Qian1, Haitao Zhang1, Qiwen Sun2, Weiyong Ying1
Received:
2017-04-12
Revised:
2017-05-19
Online:
2018-03-16
Published:
2018-02-28
Contact:
Weiyong Ying
Supported by:
Supported by the National High-Tech R&D Program of China[2011AA05A204] and the Fundamental Research Funds for the Central Universities[222201717013].
Xiaolai Zhang1, Weixin Qian1, Haitao Zhang1, Qiwen Sun2, Weiyong Ying1
通讯作者:
Weiyong Ying
基金资助:
Supported by the National High-Tech R&D Program of China[2011AA05A204] and the Fundamental Research Funds for the Central Universities[222201717013].
Xiaolai Zhang, Weixin Qian, Haitao Zhang, Qiwen Sun, Weiyong Ying. Effect of the operation parameters on the Fischer-Tropsch synthesis in fluidized bed reactors[J]. Chin.J.Chem.Eng., 2018, 26(2): 245-251.
Xiaolai Zhang, Weixin Qian, Haitao Zhang, Qiwen Sun, Weiyong Ying. Effect of the operation parameters on the Fischer-Tropsch synthesis in fluidized bed reactors[J]. Chinese Journal of Chemical Engineering, 2018, 26(2): 245-251.
[1] M.R. Rahimpour, M.H. Khademi, A.M. Bahmanpour, A comparison of conventional and optimized thermally coupled reactors for Fischer-Tropsch synthesis in GTL technology, Chem. Eng. Sci. 65(23) (2010) 6206-6214. [2] K.J. Woo, S.H. Kang, S.M. Kim, et al., Performance of a slurry bubble column reactor for Fischer-Tropsch synthesis:Determination of optimum condition, Fuel Process. Technol. 91(4) (2010) 434-439. [3] R.M. de Deugd, F. Kapteijn, J.A. Moulijn, Trends in Fischer-Tropsch reactor technology-Opportunities for structured reactors, Top. Catal. 26(1-4) (2013) 29-39. [4] P. Narataruksa, S. Tungkamani, K. Pana-Suppamassadu, et al., Conversion enhancement of tubular fixed-bed reactor for Fischer-Tropsch synthesis using static mixer, J. Nat. Gas Chem. 21(4) (2012) 435-444. [5] X.P. Dai, P.Z. Liu, Y. Shi, et al., Fischer-Tropsch synthesis in a bench-scale two-stage multitubular fixed-bed reactor:Simulation and enhancement in conversion and diesel selectivity, Chem. Eng. Sci. 105(2014) 1-11. [6] G.P. Laan, A. Beenackers, R. Krishna, Multicomponent reaction engineering model for Fe-catalysed Fischer-Tropsch synthesis in commercial scale bubble column slurry reactors, Chem. Eng. Sci. (1999) 54. [7] S.T. Sie, R. Krishna, Fundamentals and selection of advanced Fischer-Tropsch reactors, Appl. Catal. A Gen. 186(1) (1999) 55-70. [8] N. Rados, M.H. Al-Dahhan, M.P. Dudukovic, Modeling of the Fischer-Tropsch synthesis in slurry bubble column reactors, Catal. Today 79(2003) 211-218. [9] M.E. Dry, High quality diesel via the Fischer-Tropsch process-A review, J. Chem. Technol. Biotechnol. 77(1) (2002) 43-50. [10] L.C. Almeida, O. Sanz, J. D'olhaberriague, et al., Microchannel reactor for Fischer-Tropsch synthesis:Adaptation of a commercial unit for testing microchannel blocks, Fuel 110(2013) 171-177. [11] M.S. Shin, N. Park, M.J. Park, et al., Computational fluid dynamics model of a modular multichannel reactor for Fischer-Tropsch synthesis:Maximum utilization of catalytic bed by microchannel heat exchangers, Chem. Eng. J. 234(2013) 23-32. [12] J.J.C. Geerlings, J.H. Wilson, G.J. Kramer, et al., Fischer-Tropsch technology-From active site to commercial process, Appl. Catal. A Gen. 186(1) (1999) 27-40. [13] R. Krishna, S.T. Sie, Design and scale-up of the Fischer-Tropsch bubble column slurry reactor, Fuel Process. Technol. 64(1) (2000) 73-105. [14] S.T. Sie, R. Krishna, Fundamentals and selection of advanced Fischer-Tropsch reactors, Appl. Catal. A Gen. 186(1) (1999) 55-70. [15] C. Maretto, R. Krishna, Modelling of a bubble column slurry reactor for Fischer-Tropsch synthesis, Catal. Today 52(2) (1999) 279-289. [16] B. Jager, M.E. Dry, T. Shingles, et al., Experience with a new type of reactor for Fischer-Tropsch synthesis, Catal. Lett. 7(1) (1990) 293-301. [17] M.R. Rahimpour, S.M. Jokar, Z. Jamshidnejad, A novel slurry bubble column membrane reactor concept for Fischer-Tropsch synthesis in GTL technology, Chem. Eng. Res. Des. 90(3) (2012) 383-396. [18] L.C. Almeida, O. Sanz, D. Merino, et al., Kinetic analysis and microstructured reactors modeling for the Fischer-Tropsch synthesis over a Co-Re/Al2O3 catalyst, Catal. Today 215(2013) 103-111. [19] Y.N. Wang, Y.Y. Xu, Y.W. Li, et al., Heterogeneous modeling for fixed-bed Fischer-Tropsch synthesis:Reactor model and its applications, Chem. Eng. Sci. 58(3) (2003) 867-875. [20] M.R. Rahimpour, H. Elekaei, A comparative study of combination of Fischer-Tropsch synthesis reactors with hydrogen-permselective membrane in GTL technology, Fuel Process. Technol. 90(6) (2009) 747-761. [21] M. Bayat, M.R. Rahimpour, B. Moghtaderi, Genetic algorithm strategy (GA) for optimization of a novel dual-stage slurry bubble column membrane configuration for Fischer-Tropsch synthesis in gas to liquid (GTL) technology, J. Nat. Gas Sci. Eng. 3(4) (2011) 555-570. [22] N.A. Mamonov, L.M. Kustov, S.A. Alkhimov, et al., One-dimensional heterogeneous model of a Fischer-Tropsch synthesis reactor with a fixed catalyst bed in the isothermal granules approximation, Catal. Ind. 5(3) (2013) 223-231. [23] N. Moazami, H. Mahmoudi, K. Rahbar, et al., Catalytic performance of cobalt-silica catalyst for Fischer-Tropsch synthesis:Effects of reaction rates on efficiency of liquid synthesis, Chem. Eng. Sci. 134(2015) 374-384. [24] N. Moazami, M.L. Wyszynski, H. Mahmoudi, et al., Modelling of a fixed bed reactor for Fischer-Tropsch synthesis of simulated N2-rich syngas over Co/SiO2:Hydrocarbon production, Fuel 154(2015) 140-151. [25] N. Park, J.R. Kim, Y. Yoo, et al., Modeling of a pilot-scale fixed-bed reactor for ironbased Fischer-Tropsch synthesis:Two-dimensional approach for optimal tube diameter, Fuel 122(2014) 229-235. [26] J. Na, K.S. Kshetrimayum, U. Lee, et al., Multi-objective optimization of microchannel reactor for Fischer-Tropsch synthesis using computational fluid dynamics and genetic algorithm, Chem. Eng. J. 313(2017) 1521-1534. [27] Y. Li, G. Xie, T. Lei, et al., A CFD model for gas uniform distribution in turbulent flow for the production of titanium pigment in chloride process, Chin. J. Chem. Eng. 24(6) (2016) 749-756. [28] S. Wang, B. Shao, R. Liu, et al., Comparison of numerical simulations and experiments in conical gas-solid spouted bed, Chin. J. Chem. Eng. 23(10) (2015) 1579-1586. [29] F.A.N. Fernandes, E.M.M. Sousa, Fischer-Tropsch synthesis product grade optimization in a fluidized bed reactor, AIChE J. 52(8) (2006) 2844-2850. [30] M.R. Rahimpour, H. Elekaei, Optimization of a novel combination of fixed and fluidized-bed hydrogen-permselective membrane reactors for Fischer-Tropsch synthesis in GTL technology, Chem. Eng. J. 152(2) (2009) 543-555. [31] M.E. Dry, Practical and theoretical aspects of the catalytic Fischer-Tropsch process, Appl. Catal. A Gen. 138(2) (1996) 319-344. [32] X. Lan, C. Xu, G. Wang, et al., CFD modeling of gas-solid flow and cracking reaction in two-stage riser FCC reactors, Chem. Eng. Sci. 64(17) (2009) 3847-3858. [33] C. Wu, Y. Cheng, Y. Ding, et al., CFD-DEM simulation of gas-solid reacting flows in fluid catalytic cracking (FCC) process, Chem. Eng. Sci. 65(1) (2010) 542-549. [34] Q. Xue, T.J. Heindel, R.O. Fox, A CFD model for biomass fast pyrolysis in fluidized-bed reactors, Chem. Eng. Sci. 66(11) (2011) 2440-2452. [35] K. Papadikis, S. Gu, A.V. Bridgwater, CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors. Part B:Heat, momentum and mass transport in bubbling fluidised beds, Chem. Eng. Sci. 64(5) (2009) 1036-1045. [36] K. Papadikis, S. Gu, A.V. Bridgwater, CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors:Modelling the impact of biomass shrinkage, Chem. Eng. J. 149(1) (2009) 417-427. [37] M.J.V. Goldschmidt, J.A.M. Kuipers, W.P.M. Van Swaaij, Hydrodynamic modelling of dense gas-fluidised beds using the kinetic theory of granular flow:Effect of coefficient of restitution on bed dynamics, Chem. Eng. Sci. 56(2) (2001) 571-578. [38] S. Benyahia, H. Arastoopour, T.M. Knowlton, et al., Simulation of particles and gas flow behavior in the riser section of a circulating fluidized bed using the kinetic theory approach for the particulate phase, Powder Technol. 112(1) (2000) 24-33. [39] A. Almuttahar, F. Taghipour, Computational fluid dynamics of high density circulating fluidized bed riser:Study of modeling parameters, Powder Technol. 185(1) (2008) 11-23. [40] A. Neri, D. Gidaspow, Riser hydrodynamics:Simulation using kinetic theory, AIChE J. 46(1) (2000) 52-67. [41] S. Dasgupta, R. Jackson, S. Sundaresan, Turbulent gas-particle flow in vertical risers, AIChE J. 40(2) (1994) 215-228. [42] E.J. Bolio, J.L. Sinclair, Gas turbulence modulation in the pneumatic conveying of massive particles in vertical tubes, Int. J. Multiphase Flow 21(6) (1995) 985-1001. [43] C.M. Hrenya, J.L. Sinclair, Effects of particle-phase turbulence in gas-solid flows, AIChE J. 43(4) (1997) 853-869. [44] J. He, O. Simonin, Non-equilibrium prediction of the particle-phase stress tensor in vertical pneumatic conveying, ASME 166(1993) 253-263. [45] R. Garg, J. Galvin, T. Li, Open-source MFIX-DEM software for gas-solids flows:Part I-Verification studies, Powder Technol. 220(2012) 122-137. [46] S. Benyahia, M. Syamlal, T.J. O'Brien, Evaluation of boundary conditions used to model dilute, turbulent gas/solids flows in a pipe, Powder Technol. 156(2) (2005) 62-72. [47] S. Benyahia, M. Syamlal, T.J. O'Brien, Study of the ability of multiphase continuum models to predict core-annulus flow, AIChE J. 53.10(2007) 2549-2568. [48] P.C. Johnson, R. Jackson, Frictional-collisional constitutive relations for granular materials, with application to plane shearing, J. Fluid Mech. 176(1987) 67-93. [49] C. Lun, S.B. Savage, D.J. Jeffrey, et al., Kinetic theories of granular flow:Simple shear of inelastic particles and general deformations of nearly elastic particles, J. Fluid Mech. 140(1984) 223-256. [50] D. Gidaspow, L. Huilin, Collisional viscosity of FCC particles in a CFB, AIChE J. 42(9) (1996) 2503-2510. [51] L. Huilin, H. Yurong, D. Gidaspow, Hydrodynamic modelling of binary mixture in a gas bubbling fluidized bed using the kinetic theory of granular flow, Chem. Eng. Sci. 58(7) (2003) 1197-1205. [52] D.G. Schaeffer, Instability in the evolution equations describing incompressible granular flow, J. Differ. Equ. 66(1) (1987) 19-50. [53] M. Syamlal, D. Gidaspow, Hydrodynamics of fluidization:Prediction of wall to bed heat transfer coefficients, AIChE J. 31(1) (1985) 127-135. [54] D.J. Gunn, Transfer of heat or mass to particles in fixed and fluidised beds, Int. J. Heat Mass Transf. 21(4) (1978) 467-476. [55] H. Atashi, F. Siami, A.A. Mirzaei, et al., Kinetic study of Fischer-Tropsch process on titania-supported cobalt-manganese catalyst, J. Ind. Eng. Chem. 16(6) (2010) 952-961. [56] J. Yang, Y. Liu, J. Chang, et al., Detailed kinetics of Fischer-Tropsch synthesis on an industrial Fe-Mn catalyst, Ind. Eng. Chem. Res. 42(21) (2003) 5066-5090. [57] M. Rahmati, M. Mehdi, M. Bargah-Soleimani, Rate equations for the Fischer-Tropsch reaction on a promoted iron catalyst, Can. J. Chem. Eng. 79(5) (2001) 800-804. [58] M.A. Marvast, M. Sohrabi, S. Zarrinpashne, et al., Fischer-Tropsch synthesis:Modeling and performance study for Fe-HZSM5 bifunctional catalyst, Chem. Eng. Technol. 28(1) (2005) 78-86. [59] Y.N. Wang, Y.Y. Xu, H.W. Xiang, et al., Modeling of catalyst pellets for Fischer-Tropsch synthesis, Ind. Eng. Chem. Res. 40(20) (2001) 4324-4335. [60] X. Zhu, X. Lu, X. Liu, et al., Heat transfer study with and without Fischer-Tropsch reaction in a fixed bed reactor with TiO2, SiO2, and SiC supported cobalt catalysts, Chem. Eng. J. 247(2014) 75-84. [61] G. Chabot, R. Guilet, P. Cognet, et al., A mathematical modeling of catalytic milli-fixed bed reactor for Fischer-Tropsch synthesis:Influence of tube diameter on Fischer Tropsch selectivity and thermal behavior, Chem. Eng. Sci. 127(2015) 72-83. [62] F.M. Dautzenberg, M. Mukherjee, Process intensification using multifunctional reactors, Chem. Eng. Sci. 56(2) (2001) 251-267. [63] P. Zhang, J.H. Duan, G.H. Chen, et al., Effect of bed characters on the direct synthesis of dimethyldichlorosilane in fluidized bed reactor, Sci. Rep. UK 5(2015) 1-8. |
[1] | Chaojie Li, Xianxin Fang, Meiling Sun, Jihai Duan, Weiwen Wang. Study on two-phase cloud dispersion from liquefied CO2 release [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 37-45. |
[2] | Lijuan Zhao, Zhe Tan, Xiaoguang Zhang, Qijun Zhang, Wei Wang, Qiang Deng, Jie Ma, De'an Pan. Research on process modeling and simulation of spent lead paste desulfurization enhanced reactor [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 293-303. |
[3] | Hongwei Liang, Wenling Li, Zisheng Feng, Jianming Chen, Guangwen Chu, Yang Xiang. Numerical simulation of gas-liquid flow in the bubble column using Wray-Agarwal turbulence model coupled with population balance model [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 205-223. |
[4] | Feng Pan, Sugang Ma, Yu Ge, Chuanlin Fan, Qingshan Zhu. Fluidization thermal decomposition of sodium fluosilicate [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 329-337. |
[5] | Chengang Yang, Huaizhi Han, Quan Zhu, Xiangyuan Li. Cracking and buoyancy effect on hydrocarbon endothermic and heat transfer characteristics in rectangular mini-channel [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 242-254. |
[6] | Shuangfei Zhao, Yingying Nie, Wenyan Zhang, Runze Hu, Lianzhu Sheng, Wei He, Ning Zhu, Yuguang Li, Dong Ji, Kai Guo. Microfluidic field strategy for enhancement and scale up of liquid–liquid homogeneous chemical processes by optimization of 3D spiral baffle structure [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 255-265. |
[7] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
[8] | Songsong Wang, Hong Li, Changyuan Tao, Renlong Liu, Yundong Wang, Zuohua Liu. Study on cavern evolution and performance of three mixers in agitation of yield-pseudoplastic fluids [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 111-122. |
[9] | Feng Jiang, Xiao Li, Guopeng Qi, Xiulun Li. Effects of particle type on the particle fluidization and distribution in a liquid–solid circulating fluidized bed boiler [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 53-66. |
[10] | Tianpeng LiZhou, Jiajia Luo, Tiefeng Wang. Enhancement of acetylene and ethylene yields in partially decoupled oxidation of ethane by changing the composition of heat carrier [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 71-78. |
[11] | Zhibin Ma, Xueli Zhang, Guangjun Lu, Yanxia Guo, Huiping Song, Fangqin Cheng. Hydrothermal synthesis of zeolitic material from circulating fluidized bed combustion fly ash for the highly efficient removal of lead from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 193-205. |
[12] | Nouman Ahmad, Jianqiang Deng, Muhammad Adnan. Numerical investigation for the suitable choice of bubble diameter correlation for EMMS/bubbling drag model [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 254-270. |
[13] | Feng Jiang, Di Xu, Ruijia Li, Guopeng Qi, Xiulun Li. Particle collision behavior and heat transfer performance in a Na2SO4 circulating fluidized bed evaporator [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 40-52. |
[14] | Wenjuan Bai, Dianming Chu, Kuanxin Tang, Lei Geng, Yan Li, Yan He. The motion mechanism and characteristic of bubble in a pseudo-2D tapered fluidized bed [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 255-270. |
[15] | Yongjun Wu, Pan You, Peicheng Luo. Effect of pitched short blades on the flow characteristics in a stirred tank with long-short blades impeller [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 143-152. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 142
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||