[1] N.M. Mubarak, J.N. Sahu, E.C. Abdullah, N.S. Jayakumar, Removal of heavy metals from wastewater using carbon nanotubes, Sep. Purif. Rev. 43(2014) 311-338.[2] J.P. Zhao, W.C. Ren, H.M. Cheng, Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations, J. Mater. Chem. 22(2012) 20197-20202.[3] A.D. Martino, M. Iorio, B.S. Xing, R. Capassoa, Removal of 4-chloro-2-methylphenoxyacetic acid from water by sorption on carbon nanotubes and metal oxide nanoparticles, RSC Adv. 2(2012) 5693-5700.[4] K.A. Landry, T.H. Boyer, Diclofenac removal in urine using strong-base anion exchange polymer resins, Water Res. 47(2013) 6432-6444.[5] T. Nharingo, M. Moyo, Application of Opuntia ficus-indica in bioremediation of wastewaters. A critical review, J. Environ. Manag. 166(2016) 55-72.[6] I. Musbah, D. Ciceron, F. Garcia, A. Saboni, S. Alexandrova, Nanofiltration membranes for drinking water production-retention of nitrate ions, desalination and water treatment, Desalin. Water Treat. 57(2016) 16758-16769.[7] Y. Zhang, C. Causserand, P. Aimar, J.P. Cravedi, Removal of bisphenol A by a nanofiltration membrane in view of drinking water production, Water Res. 40(2006) 3793-3799.[8] H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G. Jin, S.C. Smith, J. Zou, H.M. Cheng, G.Q. Lu, Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant 001 facets, J. Am. Chem. Soc. 131(2009) 4078-4083.[9] S. Liu, J. Yu, M. Jaroniec, Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed 001 facets, J. Am. Chem. Soc. 132(2010) 11914-11916.[10] R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han, C. Li, Spatial separation of photogenerated electrons and holes among 010 and 110 crystal facets of BiVO4, Nat. Commun. 4(2013) 1432-1439.[11] D. Wodka, E. Bielanska, R.P. Socha, M. Elzbieciak-Wodka, J. Gurgul, P. Nowak, P. Warszynski, I. Kumakiri, Photocatalytic activity of titanium dioxide modified by silver nanoparticles, ACS Appl. Mater. Interfaces 27(2010) 1945-1953.[12] K. Kadziola, I. Piwonski, A. Kisielewska, D. Szczukocki, B. Krawczyk, J. Sielskic, The photoactivity of titanium dioxide coatings with silver nanoparticles prepared by sol-gel and reactive magnetron sputtering methods-comparative studies, Appl. Surf. Sci. 288(2014) 503-512.[13] X. Bai, L. Wang, Y. Zhu, Visible photocatalytic activity enhancement of ZnWO4 by graphene hybridization, ACS Catal. 2(2012) 2769-2778.[14] Y.X. Zhou, H.B. Yao, Q. Zhang, J.Y. Gong, S.J. Liu, S.H. Yu, Hierarchical FeWO4 microcrystals:Solvothermal synthesis and their photocatalytic and magneticproperties, Inorg. Chem. 48(2009) 1082-1090.[15] S. Obregon, G. Colon, Heterostructured Er3+ doped BiVO4 with exceptional photocatalytic performance by cooperative electronic and luminescence sensitization mechanism, Appl. Catal. B Environ. 158(2014) 242-249.[16] B. Inceesungvorn, T. Teeranunpong, J. Nunkaew, S. Suntalelat, D. Tantraviwat, Novel NiTiO3/Ag3VO4 composite with enhanced photocatalytic performance under visible light, Catal. Commun. 54(2014) 35-38.[17] T. Meyer, J.B. Priebe, R.O. da Silva, T. Peppel, H. Junge, M. Beller, A. Bruck-ner, S. Wohlrab, Advanced charge utilization from NaTaO3 photocatalysts by multilayer reduced graphene oxide, Chem. Mater. 26(2014) 4705-4711.[18] G.H. He, G.L. He, A.J. Li, X. Li, X.J. Wang, Y.P. Fang, Y.H. Xu, Synthesis and visible light photocatalytic behavior of WO3(core)/Bi2WO6(shell), J. Mol. Catal. A Chem. 385(2014) 106-111.[19] A.P. Zhang, J.Z. Zhang, Effects of europium doping on the photocatalytic behavior of BiVO4, J. Hazard. Mater. 173(2010) 265-272.[20] J.Q. Yu, A. Kudo, Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4, Adv. Funct. Mater. 16(2006) 2163-2169.[21] G. Nagabhushana, G. Nagaraju, G. Chandrappa, Synthesis of bismuth vanadate:its application in H2 evolution and sunlight-driven photodegradation, J. Mater. Chem. A 1(2013) 388-394.[22] S.J. Hong, S. Lee, J.S. Jang, J.S. Lee, Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation, Energy Environ. Sci. 4(2011) 1781-1787.[23] T.W. Kim, K.S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting, Science 343(2014) 990-994.[24] S.K. Pilli, T.E. Furtak, L.D. Brown, T.G. Deutsch, J.A. Turner, A.M. Herring, Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation, Energy Environ. Sci. 4(2011) 5028-5034.[25] X.X. Chang, T. Wang, P. Zhang, J.J. Zhang, A. Li, J.L. Gong, Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes, J. Am. Chem. Soc. 137(2015) 8356-8359.[26] C.J. Li, S.P. Wang, T. Wang, Y.J. Wei, P. Zhang, J.L. Gong, Monoclinic porous BiVO4 networks decorated by discrete g-C3N4 nano-islands with tunable coverage for highly efficient photocatalysis, Small 10(2014) 2783-2790.[27] C.J. Li, P. Zhang, R. Lv, J.W. Lu, T. Wang, S.P. Wang, H.F. Wang, J.L. Gong, Photocatalysis:selective deposition of Ag3PO4 on monoclinic BiVO4(040) for highly efficient photocatalysis, Small 9(2013) 3951-3956.[28] Y.Z. Liu, Y.Z. Zhu, X.B. Fan, S.B. Wang, Y. Li, F.B. Zhang, G.L. Zhang, W.C. Peng, (0D/3D) MoS2 on porous graphene as catalysts for enhanced electrochemical hydrogen evolution, Carbon 121(2017) 163-169.[29] S.H. Yang, F.F. Zhang, C.L. Gao, J.F. Xia, L. Lu, Z.H. Wang, A sandwich-like PtCographene/carbon dots/graphene catalyst for efficient methanol oxidation, J. Electroanal. Chem. 802(2017) 27-32.[30] G.L. He, M.J. Chen, Y.Q. Liu, X. Li, Y.J. Liu, Y.H. Xu, Hydrothermal synthesis of FeWO4-graphene composites and their photocatalytic activities under visible light, Appl. Surf. Sci. 351(2015) 474-479.[31] Q. Xiang, J. Yu, Graphene-based photocatalysts for hydrogen generation, J. Phys. Chem. Lett. 4(2013) 753-759.[32] M.Q. Yang, Y.J. Xu, Selective photoredox using graphene-based composite photocatalysts, Phys. Chem. Chem. Phys. 15(2013) 19102-19118.[33] T. Wa, C.J. Li, J.Y. Ji, Y.J. Wei, P. Zhang, S.P. Wang, X.B. Fan, J.L. Gong, Reduced graphene oxide (rGO)/BiVO4 composites with maximized interfacial coupling for visible light photocatalysis, ACS Sustain. Chem. Eng. 2(2014) 2253-2258.[34] Y.H. Ng, A. Iwase, A. Kudo, R. Amal, Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical Water Splitting, J. Phys. Chem. Lett. 1(2010) 2607-2612.[35] S. Yousefzadeh, M. Faraji, A.Z. Moshfegh, Constructing BiVO4/Graphene/TiO2 nanocomposite photoanode for photoelectrochemical conversion applications, J. Electroanal. Chem. 763(2016) 1-9.[36] A.L. Wang, S. Shen, Y.B. Zhao, W. Wu, Preparation and characterizations of BiVO4/reduced graphene oxide nanocomposites with higher visible light reduction activities, J. Colloid Interface Sci. 445(2015) 330-336.[37] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80(1958) 1339.[38] J. Yu, A. Kudo, Effects of structural variation of photocatalytic, hydrothermally synthesized BiVO4, Adv. Funct. Mater. 16(2006) 2163-2169.[39] R. Muzyka, M. Kwoka, L. Smedowski, N. Diez, G. Gryglewicz, Oxidation of graphite by different modified Hummers methods, New Carbon Mater. 32(2017) 15-20.[40] C. Nethravathi, T. Nisha, N. Ravishankar, C. Shivakumara, M. Rajamathi, Graphenenanocrystalline metal sulphide composites produced by a one-pot reaction starting from graphite oxide, Carbon 47(2009) 2054-2059.[41] H.K. Jeong, Y.P. Lee, R.J.W.E. Lahaye, M.H. Park, K.H. An, I.J. Kim, C.W. Yang, C.Y. Park, R.S. Ruoff, Y.H. Lee, Evidence of graphitic AB stacking order of graphite oxides, J. Am. Chem. Soc. 130(2008) 1362-1366.[42] X. Pan, Y. Zhao, S. Liu, C.L. Korzeniewski, S. Wang, Z. Fan, Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts, ACS Appl. Mater. Interfaces 4(2012) 3944-3950.[43] C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, Y. Feng, Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction, ACS Nano 4(2010) 6425-6432.[44] C. Xu, X. Wang, J. Zhu, Graphene-metal particle nanocomposites, J. Phys. Chem. C 112(2008) 19841-19845.[45] L. Chen, S.F. Yin, R. Huang, Q. Zhang, S.L. Luo, C.T. Au, Hollow peanut-like m-BiVO4:Facile synthesis and solar-light-induced photocatalytic property, CrystEngComm 14(2012) 4217-4222.[46] Y.L. Min, K. Zhang, Y.C. Chen, Y.G. Zhang, Enhanced photocatalytic performance of Bi2WO6 by graphene supporter as charge transfer channel, Sep. Purif. Technol. 86(2012) 98-105. |