[1] |
V.H. Smith, G.D. Tilman, J.C. Nekola, Eutrophication:Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems, Environ. Pollut. 100(1999) 179-196.
|
[2] |
M. Martinez, J. Jimenez, F. El Yousfi, Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalga Scenedesmus obliquus, Bioresour. Technol. 67(1999) 233-240.
|
[3] |
S. Sriram, R. Seenivasan, Microalgae cultivation in wastewater for nutrient removal, Algal Biomass Util. 3(2012) 9-13.
|
[4] |
S.-W. Heo, B.-G. Ryu, K. Nam, W. Kim, J.-W. Yang, Simultaneous treatment of foodwaste recycling wastewater and cultivation of Tetraselmis suecica for biodiesel production, Bioprocess Biosyst. Eng. (2015) 1-6.
|
[5] |
G. Markou, D. Georgakakis, Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters:A review, Appl. Energy 88(2011) 3389-3401.
|
[6] |
Q. Tao, F. Gao, C.-Y. Qian, X.-Z. Guo, Z. Zheng, Z.-H. Yang, Enhanced biomass/biofuel production and nutrient removal in an algal biofilm airlift photobioreactor, Algal Res. 21(2017) 9-15.
|
[7] |
S.-F. Han, W. Jin, R. Tu, A.E.-F. Abomohra, Z.-H. Wang, Optimization of aeration for biodiesel production by Scenedesmus obliquus grown in municipal wastewater, Bioprocess Biosyst. Eng. 39(2016) 1073-1079.
|
[8] |
J.-Y. Wu, C.-H. Lay, C.-C. Chen, S.-Y. Wu, Lipid accumulating microalgae cultivation in textile wastewater:Environmental parameters optimization, J. Taiwan Inst. Chem. Eng. 79(2017) 1-6.
|
[9] |
C. Darpito, W.-S. Shin, S. Jeon, H. Lee, K. Nam, J.-H. Kwon, J.-W. Yang, Cultivation of Chlorella protothecoides in anaerobically treated brewery wastewater for cost-effective biodiesel production, Bioprocess Biosyst. Eng. 38(2015) 523-530.
|
[10] |
X. Tan, M.K. Lam, Y. Uemura, J.W. Lim, C.Y. Wong, K.T. Lee, Cultivation of microalgae for biodiesel production:A review on upstream and downstream processing, Chin. J. Chem. Eng 26(2018) 17-30.
|
[11] |
A. Richmond, Biological principles of mass cultivation, Handbook of Microalgal Culture:Biotechnology and Applied Phycology 2004, pp. 125-177.
|
[12] |
G. Torzillo, B. Pushparaj, J. Masojidek, A. Vonshak, Biological constraints in algal biotechnology, Biotechnol. Bioprocess Eng. 8(2003) 338-348.
|
[13] |
Y. Li, Y.-F. Chen, P. Chen, M. Min, W. Zhou, B. Martinez, J. Zhu, R. Ruan, Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production, Bioresour. Technol. 102(2011) 5138-5144.
|
[14] |
Y. Feng, C. Li, D. Zhang, Lipid production of Chlorella vulgaris cultured in artificial wastewater medium, Bioresour. Technol. 102(2011) 101-105.
|
[15] |
N. Tam, Y. Wong, Effect of immobilized microalgal bead concentrations on wastewater nutrient removal, Environ. Pollut. 107(2000) 145-151.
|
[16] |
H. Wang, H. Xiong, Z. Hui, X. Zeng, Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids, Bioresour. Technol. 104(2012) 215-220.
|
[17] |
B. Cheirsilp, W. Suwannarat, R. Niyomdecha, Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock, New Biotechnol. 28(2011) 362-368.
|
[18] |
K. Lee, C.-G. Lee, Effect of light/dark cycles on wastewater treatments by microalgae, Biotechnol. Bioprocess Eng. 6(2001) 194-199.
|
[19] |
S. Hongyang, Z. Yalei, Z. Chunmin, Z. Xuefei, L. Jinpeng, Cultivation of Chlorella pyrenoidosa in soybean processing wastewater, Bioresour. Technol. 102(2011) 9884-9890.
|
[20] |
J. Huang, Y. Li, M. Wan, Y. Yan, F. Feng, X. Qu, J. Wang, G. Shen, W. Li, J. Fan, Novel flat-plate photobioreactors for microalgae cultivation with special mixers to promote mixing along the light gradient, Bioresour. Technol. 159(2014) 8-16.
|
[21] |
E.L. Paul, V.A. Atiemo-Obeng, S.M. Kresta, Handbook of Industrial Mixing:Science and Practice, John Wiley & Sons, 2004.
|
[22] |
C. Gomez-Perez, J. Espinosa, L.M. Ruiz, A. van Boxtel, CFD simulation for reduced energy costs in tubular photobioreactors using wall turbulence promoters, Algal Res. 12(2015) 1-9.
|
[23] |
M. Aghbolaghy, A. Karimi, Simulation and optimization of enzymatic hydrogen peroxide production in a continuous stirred tank reactor using CFD-RSM combined method, J. Taiwan Inst. Chem. Eng. 45(2014) 101-107.
|
[24] |
Y. Liang, N. Sarkany, Y. Cui, Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions, Biotechnol. Lett. 31(2009) 1043-1049.
|
[25] |
A. Apha, WEF, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, American Water Works Association, and Water Environment Federation, 2005(2007).
|
[26] |
A. FLUENT, 6.3, FLUENT 6.3 User's Guide, Fluent, Inc., Lebanon, NH, 2006.
|
[27] |
K. Larsdotter, Microalgae for Phosphorus Removal From Wastewater in a Nordic Climate, 2006.
|
[28] |
J.C. Goldman, Temperature effects on phytoplankton growth in continuous culture1, Limnol. Oceanogr. 22(1977) 932-936.
|
[29] |
A. Vonshak, G. Torzillo, J. Masojidek, S. Boussiba, Sub-optimal morning temperature induces photoinhibition in dense outdoor cultures of the alga Monodus subterraneus (Eustigmatophyta), Plant Cell Environ. 24(2001) 1113-1118.
|
[30] |
G.P. Harris, Photosynthesis, Productivity and Growth, E. Schweizerbart, 1978.
|
[31] |
A. Konopka, T.D. Brock, Effect of temperature on blue-green algae (cyanobacteria) in Lake Mendota, Appl. Environ. Microbiol. 36(1978) 572-576.
|
[32] |
R. Bouterfas, M. Belkoura, A. Dauta, Light and temperature effects on the growth rate of three freshwater[2pt] algae isolated from a eutrophic lake, Hydrobiologia 489(2002) 207-217.
|
[33] |
W.-Y. Choi, S.-H. Oh, C.-G. Lee, Y.-C. Seo, C.-H. Song, J.-S. Kim, H.-Y. Lee, Enhancement of the growth of marine microalga Chlorella sp. from mixotrophic perfusion cultivation for biodiesel production, Chem. Biochem. Eng. Q. 26(2012) 207-216.
|
[34] |
S. Babel, S. Takizawa, H. Ozaki, Factors affecting seasonal variation of membrane filtration resistance caused by Chlorella algae, Water Res. 36(2002) 1193-1202.
|
[35] |
K.R. Hinga, Effects of pH on coastal marine phytoplankton, Mar. Ecol. Prog. Ser. 238(2002) 281-300.
|
[36] |
W. Kim, J.M. Park, G.H. Gim, S.-H. Jeong, C.M. Kang, D.-J. Kim, S.W. Kim, Optimization of culture conditions and comparison of biomass productivity of three green algae, Bioprocess Biosyst. Eng. 35(2012) 19-27.
|
[37] |
Y. Chenl, D.G. Celia, Effects of pH on the Growth and Carbon Uptake of Marine Phytoplankton, Vol. 3755, Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, 199483-94.
|
[38] |
R.W. Gensemer, R.E. Smith, H.C. Duthie, Comparative effects of pH and aluminum on silica-limited growth and nutrient uptake in Asterionella ralfsii var. americana (Bacillariophyceae) 1, J. Phycol. 29(1993) 36-44.
|
[39] |
M. Kendrick, Algal Bioreactors for Nutrient Removal and Biomass Production During the Tertiary Treatment of Domestic Sewage, Martin Kendrick, 2011.
|
[40] |
J. Raven, W. Lucas, Energy costs of carbon acquisition, inorganic carbon uptake by aquatic photosynthetic organisms, Am. Soc. Plant Physiol. (1985) 305-324.
|
[41] |
J.C. Weissman, R.P. Goebel, J.R. Benemann, Photobioreactor design:Mixing, carbon utilization, and oxygen accumulation, Biotechnol. Bioeng. 31(1988) 336-344.
|
[42] |
Q.-x. Kong, L. Li, B. Martinez, P. Chen, R. Ruan, Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production, Appl. Biochem. Biotechnol. 160(2010) 9-18.
|
[43] |
F. Mantzouridou, T. Roukas, P. Kotzekidou, Effect of the aeration rate and agitation speed on β-carotene production and morphology of Blakeslea trispora in a stirred tank reactor:Mathematical modeling, Biochem. Eng. J. 10(2002) 123-135.
|
[44] |
R. Singh, S. Sharma, Development of suitable photobioreactor for algae production-A review, Renew. Sust. Energ. Rev. 16(2012) 2347-2353.
|