Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (7): 1674-1679.DOI: 10.1016/j.cjche.2018.10.006
• Energy, Resources and Environmental Technology • Previous Articles Next Articles
Wei Zhang1, Gang Tang1, Xiaoqin Xiang1, Renyu Wang1, Shuangquan Gao1, Xinfeng Zhu2, Qiting Zuo1
Received:
2018-08-21
Online:
2019-10-14
Published:
2019-07-28
Contact:
Wei Zhang, Qiting Zuo
Wei Zhang1, Gang Tang1, Xiaoqin Xiang1, Renyu Wang1, Shuangquan Gao1, Xinfeng Zhu2, Qiting Zuo1
通讯作者:
Wei Zhang, Qiting Zuo
Wei Zhang, Gang Tang, Xiaoqin Xiang, Renyu Wang, Shuangquan Gao, Xinfeng Zhu, Qiting Zuo. A low-cost green approach for synthesis of lead oxide from waste lead ash for use in new lead-acid batteries[J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1674-1679.
Wei Zhang, Gang Tang, Xiaoqin Xiang, Renyu Wang, Shuangquan Gao, Xinfeng Zhu, Qiting Zuo. A low-cost green approach for synthesis of lead oxide from waste lead ash for use in new lead-acid batteries[J]. 中国化学工程学报, 2019, 27(7): 1674-1679.
[1] M. López-Abelairas, M. García-Torreiro, T. Lú-Chau, J.M. Lema, A. Steinbüchel, Comparison of several methods for the separation of poly(3-hydroxybutyrate) from Cupriavidus necator H16 cultures, Biochem. Eng. J. 93(2015) 250-259. [2] J. Chen, L. Zhang, J. Chen, G. Chen, Biosynthesis and characterization of polyhydroxyalkanoate copolyesters in Ralstonia eutropha PHB-4 harboring a low-substrate-specificity PHA synthase PhaC2 Ps from Pseudomonas stutzeri 13171, Chin. J. Chem. Eng. 15(3) (2007) 391-396. [3] Y. Wang, J. Yin, G.Q. Chen, Polyhydroxyalkanoates, challenges and opportunities, Curr. Opin. Biotechnol. 30(30) (2014) 59-65. [4] M.S. Le, Z. Manfred, E. Thomas, T.M. Linda, Q. Ren, Production of mediumchain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440, BMC Biotechnol. 12(1) (2012) 53-64. [5] B.C. Saha, Hemicellulose bioconversion, J. Ind. Microbiol. Biotechnol. 30(5) (2003) 279-291. [6] N. Poomipuk, A. Reungsang, P. Plangklang, Poly-b-hydroxyalkanoates production from cassava starch hydrolysate by Cupriavidus sp. KKU38, Int. J. Biol. Macromol. 65(2014) 51-64. [7] H.S. Kim, Y.H. Oh, Y.A. Jang, K.H. Kang, Y. David, J.H. Yu, B.K. Song, J.I. Choi, Y.K. Chang, J.C. Joo, Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution, Microb. Cell Factories 15(1) (2016) 95-107. [8] D. Queirós, S. Rossetti, L.S. Serafim, PHA production by mixed cultures:A way to valorize wastes from pulp industry, Bioresour. Technol. 157(4) (2014) 197-205. [9] L. Huang, L. Chang, Y. Liu, X. Jia, The composition analysis and preliminary cultivation optimization of a PHA-producing microbial consortium with xylose as a sole carbon source, Waste Manag. 52(2016) 77-85. [10] V.S.R.K. Ganduri, S. Ghosh, P.R. Patnaik, Mixing control as a device to increase PHB production in batch fermentations with co-cultures of Lactobacillus delbrueckii and Ralstonia eutropha, Process Biochem. 40(1) (2005) 257-264. [11] F. Cerrone, S.K. Choudhari, R. Davis, D. Cysneiros, V. O'Flaherty, G. Duane, E. Casey, M.W. Guzik, S.T. Kenny, R.P. Babu, Medium chain length polyhydroxyalkanoate (mcl-PHA) production from volatile fatty acids derived from the anaerobic digestion of grass, Appl. Microbiol. Biotechnol. 98(2) (2014) 611-620. [12] A. Elain, F.M. Le, Y.M. Corre, G.A. Le, T.V. Le, J.L. Audic, S. Bruzaud, Rapid and qualitative fluorescence-based method for the assessment of PHA production in marine bacteria during batch culture, World J. Microbiol. Biotechnol. 31(10) (2015) 1555-1563. [13] D.K. Kang, C.R. Lee, S.H. Lee, J.H. Bae, Y.K. Park, Y.H. Rhee, B.H. Sung, J.H. Sohn, Production of polyhydroxyalkanoates from sludge palm oil using Pseudomonas putida S12, J. Microbiol. Biotechnol. 27(5) (2017) 990-994. [14] R. Davis, R. Kataria, F. Cerrone, T. Woods, S. Kenny, A. O'Donovan, M. Guzik, H. Shaikh, G. Duane, V.K. Gupta, Conversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas strains, Bioresour. Technol. 150(4) (2013) 202-209. [15] J. Mozejko, A. Wilke, G. Przybyłek, S. Ciesielski, Mcl-PHAs produced by Pseudomonas sp. Gl01 using fed-batch cultivation with waste rapeseed oil as carbon source, J. Microbiol. Biotechnol. 22(3) (2012) 371-377. [16] Y. Luo, J. Xiao, Y. Wang, J. Xu, S. Xie, J. Xu, Streptomyces indicus sp. nov., an actinomycete isolated from deep-sea sediment, Int. J. Syst. Evol. Microbiol. 61(11) (2011) 2712-2716. [17] C. Gao, Q. Qi, C. Madzak, C.S. Lin, Exploring medium-chain-length polyhydroxyalkanoates production in the engineered yeast Yarrowia lipolytica, J. Ind. Microbiol. Biotechnol. 42(9) (2015) 1255-1262. [18] L. Finkler, Y.P. Ginoris, C.L. Luna, T.L. Alves, J.C. Pinto, M.A.Z. Coelho, Morphological characterization of Cupriavidus necator DSM 545 flocs through image analysis, World J. Microbiol. Biotechnol. 23(6) (2007) 801-808. [19] H.W. Ryu, K.U. Cho, E.G. Lee, Y.K. Chang, Recovery of poly(3-ydroxybutyrate) from coagulated Ralstonia eutropha using a chemical digestion method, Biotechnol. Prog. 16(4) (2010) 676-679. [20] H.W. Ryu, K.S. Cho, Y.K. Chang, H.N. Chang, Cell separation from high cell density broths of Alcaligenes eutrophus by using a coagulant, Biotechnol. Tech. 10(12) (1996) 899-904. [21] I. Lupescu, M.C. Eremia, G.V. Savoiu, M. Spiridon, D. Panaitescu, C. Nicolae, M.G. Vladu, A. Stefaniu, Comparative studies on isolation of medium-chain-length Polyhydroxyalkanoates produced by Pseudomonas spp. strains, Rev. Chim. 67(10) (2016) 1957-1962. [22] X.M. Liu, G.P. Sheng, J. Wang, H.Q. Yu, Quantifying the surface characteristics and flocculability of Ralstonia eutropha, Appl. Microbiol. Biotechnol. 79(2) (2008) 187-194. [23] G. Abu-Elreesh, S. Zaki, S. Farag, M.F. Elkady, D. Abd-El-Haleem, Exobiopolymer from polyhydroxyalkanoate-producing transgenic yeast, Afr. J. Biotechnol. 10(34) (2013) 6558-6563. [24] K. Goossens, R. Willaert, Flocculation protein structure and cell-cell adhesion mechanism in Saccharomyces cerevisiae, Biotechnol. Lett. 32(11) (2010) 1571-1585. [25] F. Bidard, M. Bony, B. Blondin, S. Dequin, P. Barre, The Saccharomyces cerevisiae FLO1 flocculation gene encodes for a cell surface protein, Yeast 11(9) (1995) 809-822. [26] M.C. Bester, D. Jacobson, F.F. Bauer, Many Saccharomyces cerevisiae cell wall protein encoding genes are coregulated by Mss11, but cellular adhesion phenotypes appear only Flo protein dependent, G32(1) (2012) 131-141. [27] O. Kobayashi, H. Yoshimoto, H. Sone, Analysis of the genes activated by the FLO8 gene in Saccharomyces cerevisiae, Curr. Genet. 36(5) (1999) 256-261. [28] J.D. Romano, R. Kolter, Pseudomonas-Saccharomyces interactions:Influence of fungal metabolism on bacterial physiology and survival, J. Bacteriol. 187(3) (2005) 940-948. [29] T. Yuan, Y. Guo, J. Dong, T. Li, T. Zhou, K. Sun, M. Zhang, Q. Wu, Z. Xie, Y. Cai, Construction, characterization and application of a genome-wide promoter library in Saccharomyces cerevisiae, Front. Chem. Sci. Eng. 11(1) (2017) 107-116. [30] P. Kahar, E.I. Riyanti, H. Otsuka, H. Matsumoto, C. Kihira, C. Ogino, A. Kondo, Challenges of non-flocculating Saccharomyces cerevisiae haploid strain against inhibitory chemical complex for ethanol production, Bioresour. Technol. 245((2017) 1436-1446. [31] K. Ulaganathan, S. Goud, M. Reddy, U. Kayalvili, Genome engineering for breaking barriers in lignocellulosic bioethanol production, Renew. Sust. Energ. Rev. 74(2017) 1080-1107. [32] D. Gonzálezramos, A.R.G.D. Vries, S.S. Grijseels, M.C. Berkum, S. Swinnen, M. Broek, E. Nevoigt, J.M.G. Daran, J.T. Pronk, A.J.A. Maris, A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations, Biotechnol. Biofuels 9(1) (2016) 173-190. [33] H.S. Kim, N.R. Kim, W. Kim, W. Choi, Insertion of transposon in the vicinity of SSK2 confers enhanced tolerance to furfural in Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol. 95(2) (2012) 531-540. [34] G. Du, J. Yu, Metabolic analysis on fatty acid utilization by Pseudomonas oleovorans:mcl-Poly(3-hydroxyalkanoates) synthesis versus b-oxidation, Process Biochem. 38(3) (2002) 325-332. [35] J.J. Bozzola, L.D. Russell, Electron Microscopy:Principles and Techniques for Biologists, Jones and Bartlett, 1999. [36] P. Thonart, M. Custinne, M. Paquot, Zeta potential of yeast cells:Application in cell immobilization, Enzyme Microb. Technol. 4(3) (1982) 191-194. [37] W.Y. Lu, T. Zhang, D.Y. Zhang, C.H. Li, J.P. Wen, L.X. Du, A novel bioflocculant produced by Enterobacter aerogenes and its use in defecating the trona suspension, Biochem. Eng. J. 27(1) (2006) 1-7. [38] H. Ito, Y. Fukuda, K. Murata, A. Kimura, Transformation of intact yeast cells treated with alkali cations, J. Agric. Chem. Soc. Jpn. 48(2) (1983) 341-347. [39] S. Taguchi, M. Yamada, K.I. Matsumoto, K. Tajima, Y. Satoh, M. Munekata, K. Ohno, K. Kohda, T. Shimamura, H. Kambe, A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme, Proc. Natl. Acad. Sci. U.S.A. 105(45) (2008) 17323-17327. [40] A. Hokamura, I. Wakida, Y. Miyahara, T. Tsuge, H. Shiratsuchi, K. Tanaka, H. Matsusaki, Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant Escherichia coli from glucose, J. Biosci. Bioeng. 120(3) (2015) 305-310. [41] X.X. Wei, F. Liu, J. Jian, R.Y. Wang, G.Q. Chen, Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by recombinant Pseudomonas stutzeri 1317 from unrelated carbon sources, Chin. J. Chem. Eng. 21(9) (2013) 1057-1061. [42] Z. Zheng, Q. Gong, G.Q. Chen, A novel method for production of 3-hydroxydecanoic acid by recombinant Escherichia coli and Pseudomonas putida, Chin. J. Chem. Eng. 12(4) (2004) 550-555. [43] Y. Wang, H. Wu, X. Jiang, G.Q. Chen, Engineering Escherichia coli for enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in larger cellular space, Metab. Eng. 25(2014) 183-193. [44] S. Ohji, A. Yamazoe, A. Hosoyama, K. Tsuchikane, T. Ezaki, N. Fujita, The complete genome sequence of Pseudomonas putida NBRC 14164 confirms high intraspecies variation, Genome Announc. 2(1) (2014) e00029-14. [45] G.Q. Chen, X.R. Jiang, Y. Guo, Synthetic biology of microbes synthesizing polyhydroxyalkanoates (PHA), Synth. Syst. Biotechnol. 1(4) (2016) 236-242. [46] J. Zhou, Q. Ma, H. Yi, L. Wang, H. Song, Y.J. Yuan, Metabolome profiling reveals metabolic cooperation between Bacillus megaterium and Ketogulonicigenium vulgare during induced swarm motility, Appl. Environ. Microbiol. 77(19) (2011) 7023-7030. [47] J. Du, W. Bai, H. Song, Y.J. Yuan, Combinational expression of sorbose/sorbosone dehydrogenases and cofactor pyrroloquinoline quinone increases 2-keto-l-gulonic acid production in Ketogulonigenium vulgareBacillus cereus consortium, Metab. Eng. 19(2013) 50-56. [48] A. Prindle, P. Samayoa, I. Razinkov, T. Danino, L.S. Tsimring, J. Hasty, Sensing array of radically coupled genetic biopixels, Nature 481(7379) (2012) 39-44. [49] A.A. Eddy, A.D. Rudin, Part of the yeast surface apparently involved in flocculation, J. Inst. Brew. 64(1) (1958) 19-21. [50] B.L. Miki, N.H. Poon, A.P. James, V.L. Seligy, Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae, J. Bacteriol. 150(2) (1982) 878-889. |
[1] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 275-292. |
[2] | Jiangshan Qu, Jianbo Zhang, Huiquan Li, Shaopeng Li, Da Shi, Ruiqi Chang, Wenfen Wu, Ganyu Zhu, Chennian Yang, Chenye Wang. Occurrence, leaching behavior, and detoxification of heavy metal Cr in coal gasification slag [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 11-19. |
[3] | Yong Niu, Xiaowu Peng, Jinfeng Li, Yuze Zhang, Fugen Song, Dong Shi, Lijuan Li. Recovery of Li2CO3 and FePO4 from spent LiFePO4 by coupling technics of isomorphic substitution leaching and solvent extraction [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 306-315. |
[4] | Qing Lin, Guoquan Zhang, Kun Wang, Dongmei Luo, Siyang Tang, Hairong Yue. Two-stage cyclic ammonium sulfate roasting and leaching of extracting vanadium and titanium from vanadium slag [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 39-47. |
[5] | Xueting Liu, Chunhui Hu, Jingjing Wu, Peng Cui, Fengyu Wei. Defective NH2-UiO-66 (Zr) effectively converting CO2 into cyclic carbonate under ambient pressure, solvent-free and co-catalyst-free conditions [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 222-229. |
[6] | Shichao Yu, Rui Liao, Baojun Yang, Chaojun Fang, Zhentang Wang, Yuling Liu, Baiqiang Wu, Jun Wang, Guanzhou Qiu. Chalcocite (bio)hydrometallurgy—current state, mechanism, and future directions: A review [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 109-120. |
[7] | Erjun Zhang, Kanggen Zhou, Wei Chen, Xuekai Zhang, Changhong Peng. Separation of As and Bi and enrichment of As, Cu, and Zn from copper dust using an oxidation-leaching approach [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 125-131. |
[8] | Chunguang Song, Hongling Zhang, Yuming Dong, Lili Pei, Honghui Liu, Junsheng Jiang, Hongbin Xu. Investigation on the fabrication of lightweight aggregate with acid-leaching tailings of vanadium-bearing stone coal minerals and red mud [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 353-359. |
[9] | Lijuan Zhang, Peng Hu, Jiang Pan, Huilei Yu, Jianhe Xu. Immobilization of trophic anaerobic acetogen for semi-continuous syngas fermentation [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 311-316. |
[10] | Muhammad A. Imran, Tiantian Li, Xuemei Wu, Xiaoming Yan, Abdul-Sammed Khan, Gaohong He. Sulfonated polybenzimidazole/amine functionalized titanium dioxide (sPBI/AFT) composite electrolyte membranes for high temperature proton exchange membrane fuel cells usage [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2425-2437. |
[11] | Rongrui Deng, Hao Xiao, Zhaoming Xie, Zuohua Liu, Qiang Yu, Geng Chen, Changyuan Tao. A novel method for extracting vanadium by low temperature sodium roasting from converter vanadium slag [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2208-2213. |
[12] | Ali Asghar Balesini Aghdam, Hossein Yoozbashizadeh, Javad Moghaddam. Simple separation method of Zn(II) and Cd(II) from brine solution of zinc plant residue and synthetic chloride media using solvent extraction [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1055-1061. |
[13] | Dong Sun, Guangzhi Xin, Lu Yao, Lin Yang, Xia Jiang, Wenju Jiang. Manganese leaching in high concentration flue gas desulfurization process with semi-oxidized manganese ore [J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 571-578. |
[14] | Yanjun Zhong, Ting Shi, Qiuge Chen, Xiushan Yang, Dehua Xu, Zhiye Zhang, Xinlong Wang, Benhe Zhon. Leaching calcium from phosphogypsum desulfurization slag by using ammonium chloride solution: Thermodynamics and kinetics study [J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 208-215. |
[15] | Jianping Jin, Yuexin Han, Hui Li, Yangyang Huai, Yongjun Peng, Xiaotian Gu, Wei Yang. Mineral phase and structure changes during roasting of fine-grained carbonaceous gold ores and their effects on gold leaching efficiency [J]. Chinese Journal of Chemical Engineering, 2019, 27(5): 1184-1190. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 62
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 496
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||