[1] B. Behnajady, J. Moghaddam, Separation of arsenic from hazardous As-bearing acidic leached zinc plant purification filter cake selectively by caustic baking and water leaching, Hydrometallurgy 173(2017) 232-240. [2] A. Susan, K. Rajendran, K. Sathyasivam, U.M. Krishnan, An overview of plantbased interventions to ameliorate arsenic toxicity, Biomedecine Pharmacother. 109(2019) 838-852. [3] K.N. Konstantinov, N.A. Pestov, V.V. Revin, Chemically modified bacterial cellulose for nickel ion adsorption, J. Biotechnol. 280(2018) S48-S49. [4] G.L. Gao, D.X. Li, Y. Zhou, X.H. Sun, W. Sun, Kinetics of high-sulphur and higharsenic refractory gold concentrate oxidation by dilute nitric acid under mild conditions, Miner. Eng. 22(2) (2009) 111-115. [5] X.Y. Guo, L. Zhang, Q.H. Tian, D.W. Yu, J. Shi, Y. Yi, Selective removal of As from arsenic-bearing dust rich in Pb and Sb, Trans. Nonferrous Met. Soc. China 29(10) (2019) 2213-2221. [6] N. Hu, W. Chen, D.X. Ding, F. Li, Z.R. Dai, G.Y. Li, Y.D. Wang, H. Zhang, T. Lang, Role of water contents on microwave roasting of gold bearing high arsenic sulphide concentrate, Int. J. Miner. Process. 161(2017) 72-77. [7] T.F. Li, Y.S. Zhang, B. Zhang, J.M. Zhang, W.Q. Qin, Selective leaching of arsenic from enargite concentrate using alkaline leaching in the presence of pyrite, Hydrometallurgy 181(2018) 143-147. [8] Z.G. Wei, T.X. Xiang, R. Wang, S.Q. Gao, X. Zhu, Q.T. Zuo, A low-cost green approach for synthesis of lead oxide from waste lead ash for use in new leadacid batteries, Chin. J. Chem. Eng. 27(07) (2019) 1674-1679. [9] X. Zhang, J.Q. Pan, Y.Z. Sun, Y.J. Feng, H.X. Niu, An energy saving and fluorinefree electro refining process for ultrahigh purity lead refining, Chin. J. Chem. Eng. 27(05) (2019) 1191-1199. [10] W.Z. Liu, L.L. Yao, X.W. Lu, B.L. Hu, Removal of chloride from simulated acidic wastewater in the zinc production, Chin. J. Chem. Eng. 27(05) (2019) 1037-1043. [11] L. Guo, J.R. Lan, Y.G. Du, T.C. Zhang, D.Y. Du, Microwave-enhanced selective leaching of arsenic from copper smelting flue dusts, J. Hazard. Mater. 386(2020) 121964. [12] Solid Waste Center, National Directory of Hazardous Wastes, Ministry of Ecological Environment, China, Index Number: 000014672/2020-01495, release date: November 27, 2020 [13] C. Tan, L. Li, D.P. Zhong, H. Wang, K.Z. Li, Separation of arsenic and antimony from dust with high content of arsenic by a selective sulfidation roasting process using sulfur, Trans. Nonferrous Met. Soc. China 28(5) (2018) 1027-1035. [14] Y. Ke, C. Shen, X.B. Min, M.Q. Shi, L.Y. Chai, Separation of Cu and As in Cu-Ascontaining filter cakes by Cu2+-assisted acid leaching, Hydrometallurgy 172(2017) 45-50. [15] Y.L. Wang, L. Xiao, H.X. Liu, P. Qian, S.F. Ye, Y.F. Chen, Acid leaching pretreatment on two-stage roasting pyrite cinder for gold extraction and coprecipitation of arsenic with iron, Hydrometallurgy 179(2018) 192-197. [16] Y.H. Li, Z.H. Liu, Q.H. Li, F.P. Liu, Z.Y. Liu, Alkaline oxidative pressure leaching of arsenic and antimony bearing dusts, Hydrometallurgy 166(2016) 41-47. [17] Y.L. He, R.D. Xu, S.W. He, H.S. Chen, K. Li, Y. Zhu, Q.F. Shen, Alkaline pressure oxidative leaching of bismuth-rich and arsenic-rich lead anode slime, Int. J. Miner. Metall. Mater. 26(6) (2019) 689-700. [18] K.H. Gu, W.H. Li, J.W. Han, W. Liu, W.Q. Qin, L.B. Cai, Arsenic removal from lead-zinc smelter ash by NaOH-H2O2 leaching, Sep. Purif. Technol. 209(2019) 128-135. [19] M.S. Safarzadeh, S.M. Howard, Thermal removal of arsenic from copper concentrates: Three-dimensional isothermal predominance diagrams for the Cu-As-S-O system, J. Hazard. Mater. 347(2018) 371-377. [20] X.Y. Guo, Y. Yi, J. Shi, Q.H. Tian, Leaching behavior of metals from high-arsenic dust by NaOH-Na2S alkaline leaching, Trans. Nonferrous Met. Soc. China 26(2) (2016) 575-580. [21] W.F. Liu, X.X. Fu, T.Z. Yang, D.C. Zhang, L. Chen, Oxidation leaching of copper smelting dust by controlling potential, Trans. Nonferrous Met. Soc. China 28(9) (2018) 1854-1861. [22] Z.F. Xu, Q. Li, H.P. Nie, Pressure leaching technique of smelter dust with highcopper and high-arsenic, Trans. Nonferrous Met. Soc. China 20(2010) s176-s181. [23] Y. Chen, T. Liao, G.B. Li, B.Z. Chen, X.C. Shi, Recovery of bismuth and arsenic from copper smelter flue dusts after copper and zinc extraction, Miner. Eng. 39(2012) 23-28. [24] J.Y. Che, Y.Q. Chen, B.Z. Ma, C.Y. Wang, W.J. Zhang, Recovery of metallic Bi from PbBi slag: An integrated process of chloride leaching and electro winning, Hydrometallurgy 193(2020) 105321. [25] E. Kim, L. Horckmans, J. Spooren, K.C. Vrancken, M. Quaghebeur, K. Broos, Selective leaching of Pb, Cu, Ni and Zn from secondary lead smelting residues, Hydrometallurgy 169(2017) 372-381. [26] X.Y. Guo, J. Shi, Y. Yi, Q.H. Tian, D. Li, Separation and recovery of arsenic from arsenic-bearing dust, J. Environ. Chem. Eng. 3(3) (2015) 2236-2242. [27] F. Dalewski, Removing arsenic from copper smelter gases, JOM 51(9) (1999) 24-26. |