[1] R.F. Service, Stepping on the gas, Science 346(2014) 538-541. [2] S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature 488(2012) 294-303. [3] S. Yeh, An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas vehicles, Energy Policy 35(2007) 5865-5875. [4] G. Whyatt, Issues affecting adoption of natural gas fuel in light- and heavy-duty vehicles, Vol. PNNL-19745, Pacific Northwest National Laboratory, Richland, Washington, 2010. [5] J. Wegrzyn, M. Gurevich, Adsorbent storage of natural gas, Appl. Energy 55(1996) 71-83. [6] ARPA-E Methane Opportunities for Vehicular Energy (MOVE), (2012) (http://arpa-e-foa.energy.gov(DE-FOA-000672). [7] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O.M. Yaghi, Systematic design of pore size and functionality in isoreticular mofs and their application in methane storage, Science 295(2002) 469-472. [8] D. Yuan, D. Zhao, D. Sun, H.-C. Zhou, An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity, Angew. Chem. Int. Ed. 49(2010) 5357-5361. [9] H. Wu, W. Zhou, T. Yildirim, High-capacity methane storage in metal organic frameworks M2(dhtp): The important role of open metal sites, J. Am. Chem. Soc. 131(2009) 4995-5000. [10] Z. Guo, H. Wu, G. Srinivas, Y. Zhou, S. Xiang, Z. Chen, Y. Yang, W. Zhou, M. O’Keeffe, B. Chen, A metal-organic framework with optimized open metal sites and pore spaces for high methane storage at room temperature, Angew. Chem. Int. Ed. 50(2011) 3178-3181. [11] J.M. Lin, C.T. He, Y. Liu, P.Q. Liao, D.D. Zhou, J.P. Zhang, X.M. Chen, A metalorganic framework with a pore size/shape suitable for strong binding and close packing of methane, Angew. Chem. Int. Ed. 55(2016) 4674-4678. [12] C.E. Wilmer, M. Leaf, C.Y. Lee, O.K. Farha, B.G. Hauser, J.T. Hupp, R.Q. Snurr, Large-scale screening of hypothetical metal-organic frameworks, Nat. Chem. 4(2012) 83-89. [13] C.E. Wilmer, O.K. Farha, T. Yildirim, I. Eryazici, V. Krungleviciute, A.A. Sarjeant, R.Q. Snurr, J.T. Hupp, High-yield synthesis of a robust metal-organic framework for storing methane and other gases, Energy Environ. Sci. 6(2013) 1158-1163. [14] C.M. Simon, J. Kim, D.A. Gomez-Gualdron, J.S. Camp, Y.G. Chung, R.L. Martin, R. Mercado, M.W. Deem, D. Gunter, M. Haranczyk, D.S. Sholl, R.Q. Snurr, B. Smit, The materials genome in action: Identifying the performance limits for methane storage, Energy. Environ. Sci. 8(2015) 1190-1199. [15] R.L. Martin, C.M. Simon, B. Smit, M. Haranczyk, In silico design of porous polymer networks: High-throughput screening for methane storage materials, J. Am. Chem. Soc. 136(2014) 5006-5022. [16] S.S. Wang, H.M. Wang, Z.B. Su, L.L. Huang, X.J. Guo, Z.Y. Dai, Y.D. Zhu, W. Zhuang, L.H. Lu, Computational screening carbon-based adsorbents for CH4 delivery capacity, Fluid Phase Equilibr. 494(2019) 184-191. [17] K.J. Korman, G.E. Decker, M.R. Dworzak, M.M. Deegan, A.M. Antonio, G.A. Taggart, E.D. Bloch, Using low-pressure methane adsorption isotherms for higher-throughput screening of methane storage materials, ACS Appl. Mater. Interf. 12(2020) 40318-40327. [18] Y. Yan, D.I. Kolokolov, I. da Silva, A.G. Stepanov, A.J. Blake, A. Dailly, P. Manuel, C.C. Tang, S. Yang, M. Schroder, Porous metal-organic polyhedral frameworks with optimal molecular dynamics and pore geometry for methane storage, J. Am. Chem. Soc. 139(2017) 13349-13360. [19] C. Cuadrado-Collados, G. Mouchaham, L. Daemen, Y. Cheng, A. Ramirez-Cuesta, H. Aggarwal, A. Missyul, M. Eddaoudi, Y. Belmabkhout, J. Silvestre-Albero, Quest for an optimal methane hydrate formation in the pores of hydrolytically stable metal-organic frameworks, J. Am. Chem. Soc. 142(2020) 13391-13397. [20] T. Kundu, M. Wahiduzzaman, B.B. Shah, G. Maurin, D. Zhao, Solvent-induced control over breathing behavior in flexible metal-organic frameworks for natural-gas delivery, Angew. Chem. Int. Ed. 58(2019) 8073-8077. [21] F. Gandara, H. Furukawa, S. Lee, O.M. Yaghi, High methane storage capacity in aluminum metal-organic frameworks, J. Am. Chem. Soc. 136(2014) 5271-5274. [22] D.A. Gómez-Gualdrón, C.M. Simon, W. Lassman, D. Chen, R.L. Martin, M. Haranczyk, O.K. Farha, B. Smi, R.Q. Snurr, Impact of the strength and spatial distribution of adsorption sites on methane deliverable capacity in nanoporous materials, Chem. Eng. Sci. 159(2017) 18-30. [23] H. Furukawa, O.M. Yaghi, Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications, J. Am. Chem. Soc. 131(2009) 8875-8883. [24] J.L. Mendoza-Cortés, S.S. Han, H. Furukawa, O.M. Yaghi, W.A. Goddard III, Adsorption mechanism and uptake of methane in covalent organic frameworks: Theory and experiment, J. Phys. Chem. A. 114(2010) 10824-10833. [25] M.G. Rabbani, A.K. Sekizkardes, Z. Kahveci, T.E. Reich, R. Ding, H.M. ElKaderi, A2D mesoporous imine-linked covalent organic framework for high pressure gas storage applications, Chem. Eur. J. 19(2013) 3324-3328. [26] L.A. Baldwin, J.W. Crowe, D.A. Pyles, P.L. McGrier, Metalation of a mesoporous three-dimensional covalent organic framework, J. Am. Chem. Soc. 138(2016) 15134-15137. [27] M. Tong, Q. Yang, Y. Xiao, C. Zhong, Revealing the structure-property relationship of covalent organic frameworks for CO2 capture from postcombustion gas: A multi-scale computational study, Phys. Chem. Chem. Phys. 16(2014) 15189-15198. [28] M. Tong, Q. Yang, C. Zhong, Computational screening of covalent organic frameworks for CH4/H2, CO2/H2 and CO2/CH4 separations, Micropor. Mesopor. Mater. 210(2015) 142-148. [29] M. Tong, Q. Yang, Q. Ma, D. Liu, C. Zhong, Few-layered ultrathin covalent organic framework membranes for gas separation: A computational study, J. Mater. Chem. A. 4(2016) 124-131. [30] Y. Lan, M. Tong, Q. Yang, C. Zhong, Computational screening of covalent organic frameworks for the capture of radioactive iodine and methyl iodide, CrystEngComm 19(2017) 4920-4926. [31] M. Tong, Y. Lan, Q. Yang, C. Zhong, Exploring the structure-property relationships of covalent organic frameworks for noble gas separations, Chem. Eng. Sci. 168(2017) 456-464. [32] T.F. Willems, C. Rycroft, M. Kazi, J.C. Meza, M. Haranczyk, Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials, Micropor. Mesopor. Mater. 149(2012) 134-141. [33] D. Ongari, P.G. Boyd, S. Barthel, M. Witman, M. Haranczyk, B. Smit, Accurate characterization of the pore volume in microporous crystalline materials, Langmuir 33(2017) 14529-14538. [34] M.G. Martin, J.I. Siepmann, Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes, J. Phys. Chem. B. 102(1998) 2569-2577. [35] S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING: A generic force field for molecular simulations, J. Phys. Chem. C. 94(1990) 8897-8909. [36] A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. GoddardIII, W.M. Skiff, A full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc. 114(1992) 10024-10035. [37] S. Keskin, Adsorption, diffusion, and separation of CH4/H2 mixtures in covalent organic frameworks: Molecular simulations and theoretical predictions, J. Phys. Chem. C. 116(2012) 1772-1779. [38] F. Karavias, A.L. Myers, Isosteric heats of multicomponent adsorption: Thermodynamics and computer simulations, Langmuir 7(1991) 3118-3126. [39] Q. Yang, D. Liu, C. Zhong, J.R. Li, Development of computational methodologies for metal-organic frameworks and their application in gas separations, Chem. Rev. 113(2013) 8261-8323. [40] D.A. Gómez-Gualdrón, C.E. Wilmer, O.K. Farha, J.T. Hupp, R.Q. Snurr, Exploring the limits of methane storage and delivery in nano porous materials, J. Phys. Chem. C. 118(2014) 6941-6951. [41] J.A. Mason, J. Oktawiec, M.K. Taylor, M.R. Hudson, J. Rodriguez, J.E. Bachman, M.I. Gonzalez, A. Cervellino, A. Guagliard, C.M. Brown, P.L. Llewellyn, N. Masciocchi, J.R. Long, Methane storage in flexible metal-organic frameworks with intrinsic thermal management, Nature 527(2015) 357-361. [42] C.C. Liang, Z.L. Shi, C.T. He, J. Tan, H.D. Zhou, H.L. Zhou, Y. Lee, Y.B. Zhang, Engineering of pore geometry for ultrahigh capacity methane storage in mesoporous metal-organic frameworks, J. Am. Chem. Soc. 139(2017) 13300-13303. [43] W. Zhang, Y. Liu, Y. Luo, C. Xie, Z. Xiang, J.F. Chen, HiGee strategy toward rapid mass production of porous covalent organic polymers with superior methane deliverable capacity, Adv. Funct. Mater. 30(2020) 1908079. [44] B. Li, H.M. Wen, H. Wang, H. Wu, M. Tyagi, T. Yildirim, W. Zhou, B. Chen, A porous metal-organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity, J. Am. Chem. Soc. 136(2014) 6207-6210. [45] R.L. Martin, M. Haranczyk, Construction and characterization of structure models of crystalline porous polymers, Cryst. Growth Des. 14(2014) 2431-2440. [46] C.S. Diercks, O.M. Yaghi, The atom, the molecule, and the covalent organic framework, Science 355(2017) 923. [47] L. Stegbauer, M.W. Hahn, A. Jentys, G. Savasci, C. Ochsenfeld, J.A. Lercher, B.V. Lotsch, Tunable water and CO2 sorption properties in isostructural azine-based covalent organic frameworks through polarity engineering, Chem. Mater. 27(2015) 7874-7881. [48] S. Nandi, S.K. Singh, D. Mullangi, R. Illathvalappil, L. George, C.P. Vinod, S. Kurungot, R. Vaidhyanathan, Low band gap benzimidazole COF supported Ni3N as highly active OER catalyst, Adv. Energy Mater. 6(2016) 1601189. [49] H. Yang, Y. Du, S. Wan, G.D. Trahan, Y. Jin, W. Zhang, Mesoporous 2D covalent organic frameworks based on shape-persistent arylene-ethynylene macrocycles, Chem. Sci. 6(2015) 4049-4053. [50] X. Feng, Y. Dong, D. Jiang, Star-shaped two-dimensional covalent organic frameworks, CrystEngComm 15(2013) 1508-1511. |