[1] E. Worrell, D. Phylipsen, D. Einstein, N. Martin, Energy Use and Energy Intensity of the US Chemical Industry, Lawrence Berkeley National Lab, CA (US), 2000. [2] National Research Council, Energy: Providing for the Future, in: Beyond Mol. Front. Challenges Chem. Chem. Eng., The National Academies Press, Washington, DC, (2003) 160-170. [3] K. Hargroves, K. Gockowiak, C. Desha, An Overview of Energy Efficiency Opportunities in Chemical Engineering, The University of Adelaide and Queensland University of Technology, 2014. [4] M. Wengerter, Y. Li, H. Nieder, J.J. Brandner, M. Schoenitz, S. Scholl, Energy and resource efficient continuous production of a binder emulsion using microstructured devices, Chem. Eng. Process. Process Intensif. 122(2017) 319-329. [5] Y. Li, I. Gerken, A. Hensel, M. Kraut, J.J. Brandner, Development of a continuous emulsification process for a highly viscous dispersed phase using microstructured devices, Green Process. Synth. 2(2013) 499-507. [6] V. Hessel, H. Lowe, Microreactor technology: applications in pharma/chemical processing, Innov Pharma Technol. 2(2010) 88-92. [7] Y. Liu, Y. Li, A. Hensel, J.J. Brandner, K. Zhang, X. Du, Y. Yang, A review on emulsification via microfluidic processes, Front. Chem. Sci. Eng. (2020) 1-15. [8] L. Li, J. Zhang, C. Du, G. Luo, Process intensification of sulfuric acid alkylation using a microstructured chemical system, Ind. Eng. Chem. Res. 57(2018) 3523-3529. [9] J.P. McMullen, K.F. Jensen, Integrated microreactors for reaction automation: new approaches to reaction development, Annu. Rev. Anal. Chem. 3(2010) 19-42. [10] Y. Li, M. Wengerter, I. Gerken, H. Nieder, S. Scholl, J.J. Brandner, Development of an efficient emulsification process using miniaturized process engineering equipment, Chem. Eng. Res. Des. 108(2016) 23-29. [11] J.C. Fausey, K.A. Renner, Broadleaf weed control in corn (Zea mays) and soybean (Glycine max) with CGA-248757 and flumiclorac alone and in tank mixtures, Weed Technol. 15(2001) 399-407. [12] K. Al-Khatib, D.E. Peterson, D.L. Regehr, Control of imazethapyr-resistant common sunflower (Helianthus annuus) in soybean (Glycine max) and corn (Zea mays), Weed Technol. 14(2000) 133-139. [13] Zhiran Consulting, 2020-2026 Report of dicamba market demand potential and strategic consulting in China, (2019). [14] Y. Li, C. Yang, Z. Zhang, Y. Zhang, L. Lu, H. Zhang, K. Zhang, X. Du, Y. Yang, An anti-sedimentation microreactor and synthesis system, CN Pat., 108745222A (2018). [15] X. Ma, X. Tu, R. He, Y. Wu, B. Zhang, Y. Bai, J. Zeng, S. Shao, G. Zhu, S. Chen, A study on electrosynthesis of 2, 5-dichlorophenol using titanium anode coated with metallic oxide, Int. J. Electrochem. Sci. 13(2018) 333-343. [16] R.H. Sehring, Preparation of 2, 5-dichlorophenol, USA Pat., 4670610A, 1987. [17] T. Hattori, Print to display on mobile device, USA Pat., 20150067494A1(2015). [18] L.L. Karr, R.J. Sbragia, Synergistic juvenoid chitin synthesis inhibitor termiticide compositions, USA Pat., 6093415A (2000). [19] W. Suhua, L. Rongzhu, Y. Changqing, X. Guangwei, H. Fangan, J. Junjie, X. Wenrong, M. Aschner, Lipid peroxidation and changes of trace elements in mice treated with paradichlorobenzene, Biol. Trace Elem. Res. 136(2010) 320-336. [20] J.M. Bremner, L.A. Douglas, Inhibition of urease activity in soils, Soil Biol. Biochem. 3(1971) 297-307. [21] H. Keipour, A. Hosseini, A. Afsari, R. Oladee, M.A. Khalilzadeh, T. Ollevier, CsF/clinoptilolite: An efficient solid base in SNAr and copper-catalyzed Ullmann reactions, Can. J. Chem. 94(2016) 95-104. [22] M.A. Khalilzadeh, A. Hosseini, A. Pilevar, Potassium fluoride supported on natural nanoporous zeolite: A new solid base for the synthesis of diaryl ethers, Eur. J. Org. Chem. 2011(2011) 1587-1592. [23] H. Firouzabadi, N. Iranpoor, A.A. Jafari, Facile and selective preparation of esters from carboxylic acids catalyzed by aluminumdodecatangstophosphate (AlPW12O40) as a versatile, recyclable and a highly water tolerant green lewis acid catalyst, Lett. Org. Chem. 3(2006) 25-28. [24] M.M. Salunkhe, M.T. Thorat, R.B. Mane, P.P. Wadgaonkar, Polymer-supported reagents: A simple and efficient method for the synthesis of esters of 2, 4-dichlorophenoxyacetic acid, Eur. Polym. J. 25(1989) 1091-1093. [25] G.D. Yadav, B.G. Motirale, Novelties of solid liquid phase transfer catalyzed synthesis of triclosan from potassium 2, 4-dichlorophenolate and 2, 5-dichlorophenol, Ind. Eng. Chem. Res. 47(2008) 9055-9060. [26] A. Pusino, C. Gessa, Catalytic hydrolysis of diclofop-methyl on Ca-, Na-and Kmontmorillonites, Pestic. Sci. 30(1990) 211-216. [27] C.-X. Guo, W.-Z. Zhang, N. Zhang, X.-B. Lu, 1, 3-Dipolar cycloaddition of nitrile imine with carbon dioxide: Access to 1, 3, 4-oxadiazole-2(3 H)-ones, J. Org. Chem. 82(2017) 7637-7642. [28] N.Yang, G.Yuan, One-potsynthesisof1,3, 4-oxadiazol-2(3H)-ones with CO2 as a C1 synthon promoted by hypoiodite, Org. Biomol. Chem. 17(2019) 6639-6644. [29] A.A. Cevasco, K.A.M. Kremer, Process for the manufacture of N-(1-cyanoalkyl)-2-phenoxypropionamide derivatives, USA Pat., US5942640A (1999). [30] Natl. Inst. Stand. Technol., Phenol, 2,5-dichloro-, (NIST) https://webbook.nist.gov/cgi/cbook.cgi?ID=C583788&Units=SI&Mask=200#Mass-Spec. [31] Natl. Inst. Stand. Technol., Phenol, 2,4-dichloro-, (NIST) https://webbook.nist.gov/cgi/cbook.cgi?ID=C120832&Mask=200#Mass-Spec. [32] Natl. Inst. Stand. Technol., Phenol, 3,4-dichloro-, (NIST) https://webbook.nist.gov/cgi/cbook.cgi?ID=C95772&Units=SI&Mask=200#Mass-Spec. |