Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (10): 2251-2260.DOI: 10.1016/j.cjche.2019.05.003
• Reviews • Previous Articles Next Articles
Ling Sun
Received:
2019-01-30
Revised:
2019-05-06
Online:
2020-01-17
Published:
2019-10-28
Supported by:
Ling Sun
作者简介:
Ling Sun,E-mail address:sunling@bjut.edu.cn.
基金资助:
Ling Sun. Structure and synthesis of graphene oxide[J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2251-2260.
Ling Sun. Structure and synthesis of graphene oxide[J]. 中国化学工程学报, 2019, 27(10): 2251-2260.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2019.05.003
[1] P. Feicht, S. Eigler, Defects in graphene oxide as structural motifs, ChemNanoMat 4(3) (2018) 244-252. [2] B.C. Brodie, On the atomic weight of graphite, Philos. Trans. R. Soc. Lond. 149(1859) 249-259. [3] H.P. Boehm, R. Setton, E. Stumpp, Nomenclature and terminology of graphite intercalation compounds, Carbon 24(2) (1986) 241-245. [4] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, et al., Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3) (2008) 902-907. [5] A.K. Geim, Graphene:Status and prospects, Science (New York, N.Y.) 324(5934) (2009) 1530-1534. [6] S. Padmajan Sasikala, J. Lim, I.H. Kim, H.J. Jung, T. Yun, T.H. Han, et al., Graphene oxide liquid crystals:A frontier 2D soft material for graphene-based functional materials, Chem. Soc. Rev. 47(16) (2018) 6013-6045. [7] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39(1) (2010) 228-240. [8] J.Y. Lim, N.M. Mubarak, E.C. Abdullah, S. Nizamuddin, M. Khalid, Inamuddin, Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals-A review, J. Ind. Eng. Chem. 66(2018) 29-44. [9] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, et al., Improved synthesis of graphene oxide, ACS Nano 4(8) (2010) 4806-4814. [10] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80(6) (1958) 1339. [11] A.M. Dimiev, L.B. Alemany, J.M. Tour, Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model, ACS Nano 7(1) (2013) 576-588. [12] B. Konkena, S. Vasudevan, Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements, J. Phys. Chem. Lett. 3(7) (2012) 867-872. [13] H. He, J. Klinowski, M. Forster, A. Lerf, A new structural model for graphite oxide, Chem. Phys. Lett. 287(1-2) (1998) 53-56. [14] M. Sun, J. Li, Graphene oxide membranes:Functional structures, preparation and environmental applications, Nano Today 20(2018) 121-137. [15] F. Savazzi, F. Risplendi, G. Mallia, N.M. Harrison, G. Cicero, Unravelling some of the structure-property relationships in graphene oxide at low degree of oxidation, J. Phys. Chem. Lett. 9(7) (2018) 1746-1749. [16] T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, et al., Evolution of surface functional groups in a series of progressively oxidized graphite oxides, Chem. Mater. 18(11) (2006) 2740-2749. [17] A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited ‖, J. Phys. Chem. B 102(23) (1998) 4477-4482. [18] T. Nakajima, Y. Matsuo, Formation process and structure of graphite oxide, Carbon 32(3) (1994) 469-475. [19] W. Scholz, H.P. Boehm, Untersuchungen am Graphitoxid. VI. Betrachtungen zur Struktur des Graphitoxids, Z. Anorg. Allg. Chem. 369(3-6) (1969) 327-340. [20] A. Clauss, R. Plass, H.-P. Boehm, U. Hofmann, Untersuchungen zur Struktur des Graphitoxyds, Z. Anorg. Allg. Chem. 291(5-6) (1957) 205-220. [21] G. Ruess, ber das Graphitoxyhydroxyd (Graphitoxyd), Monatshefte fr Chemie 76(3-5) (1947) 381-417. [22] U. Hofmann, R. Holst, Über die Säurenatur und die Methylierung von Graphitoxyd, Ber. dtsch. Chem. Ges. A/B 72(4) (1939) 754-771. [23] J.P. Rourke, P.A. Pandey, J.J. Moore, M. Bates, I.A. Kinloch, R.J. Young, et al., The real graphene oxide revealed:Stripping the oxidative debris from the graphene-like sheets, Angew. Chem. 50(14) (2011) 3173-3177 International ed. in English. [24] S. Kim, S. Zhou, Y. Hu, M. Acik, Y.J. Chabal, C. Berger, et al., Room-temperature metastability of multilayer graphene oxide films, Nat. Mater. 11(2012) 544 EP. [25] Z. Liu, K. Nørgaard, M.H. Overgaard, M. Ceccato, D.M.A. Mackenzie, N. Stenger, et al., Direct observation of oxygen configuration on individual graphene oxide sheets, Carbon 127(2018) 141-148. [26] A.R. Botello-Méndez, S.M.-M. Dubois, A. Lherbier, J.-C. Charlier, Achievements of DFT for the investigation of graphene-related nanostructures, Acc. Chem. Res. 47(11) (2014) 3292-3300. [27] V. Gupta, N. Sharma, U. Singh, M. Arif, A. Singh, Higher oxidation level in graphene oxide, Optik 143(2017) 115-124. [28] K. Andre Mkhoyan, A.W. Contryman, J. Silcox, D.A. Stewart, G. Eda, C. Mattevi, et al., Atomic and electronic structure of graphene-oxide, Nano Lett. 9(3) (2009) 1058-1063. [29] R.J.W.E. Lahaye, H.K. Jeong, C.Y. Park, Y.H. Lee, Density functional theory study of graphite oxide for different oxidation levels, Phys. Rev. B 79(12) (2009), 125435. [30] S. Tang, S. Zhang, Adsorption of epoxy and hydroxyl groups on zigzag graphene nanoribbons:Insights from density functional calculations, Chem. Phys. 392(1) (2012) 33-45. [31] G. Eda, M. Chhowalla, Chemically derived graphene oxide:Towards large-area thin-film electronics and optoelectronics, Advanced materials (Deerfield Beach, Fla.) 22(22) (2010) 2392-2415. [32] D. Pandey, R. Reifenberger, R. Piner, Scanning probe microscopy study of exfoliated oxidized graphene sheets, Surf. Sci. 602(9) (2008) 1607-1613. [33] N.R. Wilson, P.A. Pandey, R. Beanland, R.J. Young, I.A. Kinloch, L. Gong, et al., Graphene oxide:Structural analysis and application as a highly transparent support for electron microscopy, ACS Nano 3(9) (2009) 2547-2556. [34] D.W. Boukhvalov, M.I. Katsnelson, Modeling of graphite oxide, J. Am. Chem. Soc. 130(32) (2008) 10697-10701. [35] M. Lundie, Ž. Šljivančanin, S. Tomić, Analysis of energy gap opening in graphene oxide, J. Phys. Conf. Ser. 526(2014), 12003. [36] E.C. Mattson, H. Pu, S. Cui, M.A. Schofield, S. Rhim, G. Lu, et al., Evidence of nanocrystalline semiconducting graphene monoxide during thermal reduction of graphene oxide in vacuum, ACS Nano 5(12) (2011) 9710-9717. [37] J.J. Hernández Rosas, R.E. Ramírez Gutiérrez, A. Escobedo-Morales, E. Chigo Anota, First principles calculations of the electronic and chemical properties of graphene, graphane, and graphene oxide, J. Mol. Model. 17(5) (2011) 1133-1139. [38] H. Huang, Z. Li, J. She, W. Wang, Oxygen density dependent band gap of reduced graphene oxide, J. Appl. Phys. 111(5) (2012), 54317. [39] J. Chen, X. Zhang, X. Zheng, C. Liu, X. Cui, W. Zheng, Size distribution-controlled preparation of graphene oxide nanosheets with different C/O ratios, Mater. Chem. Phys. 139(1) (2013) 8-11. [40] X. Jiang, J. Nisar, B. Pathak, J. Zhao, R. Ahuja, Graphene oxide as a chemically tunable 2-D material for visible-light photocatalyst applications, J. Catal. 299(2013) 204-209. [41] S. Zhang, J. Zhou, Q. Wang, P. Jena, Structure, stability, and property modulations of stoichiometric graphene oxide, J. Phys. Chem. C 117(2) (2013) 1064-1070. [42] S.D. Dabhi, S.D. Gupta, P.K. Jha, Structural, electronic, mechanical, and dynamical properties of graphene oxides:A first principles study, J. Appl. Phys. 115(20) (2014), 203517. [43] I. Guilhon, F. Bechstedt, S. Botti, M. Marques, L.K. Teles, Thermodynamic, electronic, and optical properties of graphene oxide:A statistical ab initio approach, Phys. Rev. B 95(24) (2017), 245427. [44] D.L. Duong, G. Kim, H.-K. Jeong, Y.H. Lee, Breaking AB stacking order in graphite oxide:Ab initio approach, Phys. Chem. Chem. Phys. 12(7) (2010) 1595-1599. [45] Kotrusz P. Viera, M. Jergel, T. Susi, A. Mittelberger, V. Vretenár, et al., Chemical oxidation of graphite:Evolution of the structure and properties, J. Phys. Chem. C 122(1) (2018) 929-935. [46] N.I. Kovtyukhova, Y. Wang, A. Berkdemir, R. Cruz-Silva, M. Terrones, V.H. Crespi, et al., Non-oxidative intercalation and exfoliation of graphite by Brønsted acids, Nat. Chem. 6(2014) 957 EP. [47] D. Cortés Arriagada, Global and local reactivity indexes applied to understand the chemistry of graphene oxide and doped graphene, J. Mol. Model. 19(2) (2013) 919-930. [48] L. Staudenmaier, Verfahren zur Darstellung der Graphitsäure, Ber. Dtsch. Chem. Ges. 31(2) (1898) 1481-1487. [49] L. Fu, Liu Hongbo, Zou Yanhong, Li Bo, Technology research on oxidative degree of graphite oxide prepared by Hummers method (in Chinese), Carbon 124(4) (2005) 10-14. [50] J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li, et al., Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets, Chem. Mater. 21(15) (2009) 3514-3520. [51] C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.-H. Tsai, et al., Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers, Chem. Mater. 21(23) (2009) 5674-5680. [52] L. Sun, B. Fugetsu, Mass production of graphene oxide from expanded graphite, Mater. Lett. 109(2013) 207-210. [53] S. Eigler, M. Enzelberger-Heim, S. Grimm, P. Hofmann, W. Kroener, A. Geworski, et al., Wet chemical synthesis of graphene, Adv. Mater. 25(26) (2013) 3583-3587. [54] J. Chen, Y. Li, L. Huang, C. Li, G. Shi, High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process, Carbon 81(2015) 826-834. [55] V. Panwar, A. Chattree, K. Pal, A new facile route for synthesizing of graphene oxide using mixture of sulfuric-nitric-phosphoric acids as intercalating agent, Physica E:Low-dimensional Systems and Nanostructures 73(2015) 235-241. [56] L. Peng, Z. Xu, Z. Liu, Y. Wei, H. Sun, Z. Li, et al., An iron-based green approach to 1-h production of single-layer graphene oxide, Nat. Commun. 6(2015) 5716. [57] M. Rosillo-Lopez, C.G. Salzmann, A simple and mild chemical oxidation route to high-purity nano-graphene oxide, Carbon 106(2016) 56-63. [58] H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, High-efficient synthesis of graphene oxide based on improved Hummers method, Sci. Rep. 6(2016), 36143. [59] A.M. Dimiev, G. Ceriotti, A. Metzger, N.D. Kim, J.M. Tour, Chemical mass production of graphene nanoplatelets in ~100% yield, ACS Nano 10(1) (2016) 274-279. [60] S. Pei, Q. Wei, K. Huang, H.-M. Cheng, W. Ren, Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation, Nat. Commun. 9(1) (2018) 145. [61] P. Ranjan, S. Agrawal, A. Sinha, T.R. Rao, J. Balakrishnan, A.D. Thakur, A low-cost non-explosive synthesis of graphene oxide for scalable applications, Sci. Rep. 8(1) (2018), 12007. [62] R.J. Beckett, R.C. Croft, The structure of graphite oxide, J. Phys. Chem. 56(8) (1952) 929-935. [63] W.K. Park, Y. Yoon, Y.H. Song, S.Y. Choi, S. Kim, Y. Do, et al., High-efficiency exfoliation oflarge-area mono-layer graphene oxidewith controlleddimension, Sci. Rep. 7(1) (2017), 16414. [64] J. Chen,B.Yao, C. Li, G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide, Carbon 64(2013) 225-229. [65] N.M. Huang, H.N. Lim, C.H. Chia, M.A. Yarmo, M.R. Muhamad, Simple roomtemperature preparation of high-yield large-area graphene oxide, Int. J. Nanomedicine 6(2011) 3443-3448. [66] Z. Sofer, J. Luxa, O. Jankovský, D. Sedmidubský, T. Bystroň, M. Pumera, Synthesis of graphene oxide by oxidation of graphite with ferrate(VI) compounds:Myth or reality? Angew. Chem. 128(39) (2016) 12144-12148. [67] H. Yang, H. Li, J. Zhai, L. Sun, H. Yu, Simple synthesis of graphene oxide using ultrasonic cleaner from expanded graphite, Ind. Eng. Chem. Res. 53(46) (2014) 17878-17883. [68] N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, et al., Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations, Chem. Mater. 11(3) (1999) 771-778. [69] M. Liu, X. Zhang, W. Wu, T. Liu, Y. Liu, B. Guo, et al., One-step chemical exfoliation of graphite to similar to 100% few-layer graphene with high quality and large size at ambient temperature, Chem. Eng. J. 355(2019) 181-185. [70] T. Liu, X. Zhang, M. Liu, W. Wu, K. Liu, Y. Liu, et al., One-step room-temperature exfoliation of graphite to 100% few-layer graphene with high quality and large size, J. Mater. Chem. C 6(31) (2018) 8343-8348. [71] A.M. Dimiev, J.M. Tour, Mechanism of graphene oxide formation, ACS Nano 8(3) (2014) 3060-3068. [72] M. Inagaki, N. Iwashita, E. Kouno, Potential change with intercalation of sulfuric acid into graphite by chemical oxidation, Carbon 28(1) (1990) 49-55. [73] A.M. Rodríguez, P.S.V. Jiménez, Some new aspects of graphite oxidation at 0℃ in a liquid medium. A mechanism proposal for oxidation to graphite oxide, Carbon 24(2) (1986) 163-167. [74] N.E. Sorokina, M.A. Khaskov, V.V. Avdeev, I.V. Nikol'skaya, Reaction of graphite with sulfuric acid in the presence of KMnO4, Russ. J. Gen. Chem. 75(2) (2005) 162-168. [75] P. Scharff, Z.-Y. Xu, E. Stumpp, K. Barteczko, Reversibility of the intercalation of nitric acid into graphite, Carbon 29(1) (1991) 31-37. [76] A.M. Dimiev, S.M. Bachilo, R. Saito, J.M. Tour, Reversible formation of ammonium persulfate/sulfuric acid graphite intercalation compounds and their peculiar Raman spectra, ACS Nano 6(9) (2012) 7842-7849. [77] T. Liu, R. Zhang, X. Zhang, K. Liu, Y. Liu, P. Yan, One-step room-temperature preparation of expanded graphite, Carbon 119(2017) 544-547. [78] F. Kang, T.-Y. Zhang, Y. Leng, Electrochemical synthesis of sulfate graphite intercalation compounds with different electrolyte concentrations, J. Phys. Chem. Solids 57(6-8) (1996) 883-888. [79] M. Inagaki, N. Iwashita, Y. Hishiyama, Criteria for the intercalation of sulfuric acid, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 244(1) (1994) 89-94. [80] M. Inagaki, N. Iwashita, Large discharge capacity from carbon electrodes in sulfuric acid with oxidant, J. Power Sources 52(1) (1994) 69-75. [81] N. Morimoto, H. Suzuki, Y. Takeuchi, S. Kawaguchi, M. Kunisu, C.W. Bielawski, et al., Real-time, in situ monitoring of the oxidation of graphite:Lessons learned, Chem. Mater. 29(5) (2017) 2150-2156. [82] M. Inagaki, Carbon materials structure, texture and intercalation, Solid State Ionics 86(1996) 833-839. [83] M. Inagaki, N. Iwashita, Chemical charging and electrochemical discharging through graphite intercalation compounds with sulfuric acid, Solid State Ionics 70-71(1994) 425-428. [84] Y.-R. Shin, S.-M. Jung, I.-Y. Jeon, J.-B. Baek, The oxidation mechanism of highly ordered pyrolytic graphite in a nitric acid/sulfuric acid mixture, Carbon 52(2013) 493-498. [85] J. Xu, Y. Dou, Z. Wei, J. Ma, Y. Deng, Y. Li, et al., Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries, Advanced science (Weinheim, Baden-Wurttemberg, Germany) 4(10) (2017), 1700146. [86] S. Pan, I.A. Aksay, Factors controlling the size of graphene oxide sheets produced via the graphite oxide route, ACS Nano 5(5) (2011) 4073-4083. [87] L. Dong, J. Yang, M. Chhowalla, K.P. Loh, Synthesis and reduction of large sized graphene oxide sheets, Chem. Soc. Rev. 46(23) (2017) 7306-7316. [88] X. Chen, B.Chen,Direct observation, molecular structure,andlocation ofoxidation debris on graphene oxide nanosheets, Environ. Sci. Technol. 50(16) (2016) 8568-8577. [89] J. Zhao, S. Pei, W. Ren, L. Gao, H.-M. Cheng, Efficient preparation of large-area graphene oxide sheets for transparent conductive films, ACS Nano 4(9) (2010) 5245-5252. [90] C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing sugar:New functional molecules for the green synthesis of graphene nanosheets, ACS Nano 4(4) (2010) 2429-2437. [91] S.Y. Jeong, S.H. Kim, J.T. Han, H.J. Jeong, S. Yang, G.-W. Lee, High-performance transparent conductive films using rheologically derived reduced graphene oxide, ACS Nano 5(2) (2011) 870-878. [92] P.G. Karagiannidis, S.A. Hodge, L. Lombardi, F. Tomarchio, N. Decorde, S. Milana, et al., Microfluidization of graphite and formulation of graphene-based conductive inks, ACS Nano 11(3) (2017) 2742-2755. [93] J. Fu, C. Wei, W. Wang, J.L. Wei, J. Lv, Studies of structure and properties of graphene oxide prepared by ball milling, Mater. Res. Innov. 19(2015) S277-S280. [94] P. Dash, T. Dash, T.K. Rout, A.K. Sahu, S.K. Biswal, B.K. Mishra, Preparation of graphene oxide by dry planetary ball milling process from natural graphite, RSC Adv. 6(15) (2016) 12657-12668. [95] M.D. Moreira, V.R. Coluci, Initial stages of graphene oxide cracking in basic media, Carbon 142(2019) 217-223. [96] R. Yuan, J. Yuan, Y. Wu, L. Chen, H. Zhou, J. Chen, Efficient synthesis of graphene oxide and the mechanisms of oxidation and exfoliation, Appl. Surf. Sci. 416(2017) 868-877. [97] J. Chen, F. Chi, L. Huang, M. Zhang, B. Yao, Y. Li, et al., Synthesis of graphene oxide sheets with controlled sizes from sieved graphite flakes, Carbon 110(2016) 34-40. [98] H. Geng, B. Yao, J. Zhou, K. Liu, G. Bai, W. Li, et al., Size fractionation of graphene oxide nanosheets via controlled directional freezing, J. Am. Chem. Soc. 139(36) (2017) 12517-12523. [99] S. Zhang, Y. Li, J. Sun, J. Wang, C. Qin, L. Dai, Size fractionation of graphene oxide sheets assisted by circular flow and their graphene aerogels with size-dependent adsorption, RSC Adv. 6(78) (2016) 74053-74060. [100] J. Chen, Y. Li, L. Huang, N. Jia, C. Li, G. Shi, Size fractionation of graphene oxide sheets via filtration through track-etched membranes, Adv. Mater. 27(24) (2015) 3654-3660. [101] W. Zhang, X. Zou, H. Li, J. Hou, J. Zhao, J. Lan, et al., Size fractionation of graphene oxide sheets by the polar solvent-selective natural deposition method, RSC Adv. 5(1) (2015) 146-152. [102] X. Lin, X. Shen, Q. Zheng, N. Yousefi, L. Ye, Y.-W. Mai, et al., Fabrication of highlyaligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets, ACS Nano 6(12) (2012) 10708-10719. [103] X. Wang, H. Bai, G. Shi, Size fractionation of graphene oxide sheets by pH-assisted selective sedimentation, J. Am. Chem. Soc. 133(16) (2011) 6338-6342. |
[1] | Sinu Poolachira, Sivasubramanian Velmurugan. Graphene oxide/hydrotalcite modified polyethersulfone nanohybrid membrane for the treatment of lead ion from battery industrial effluent [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 253-261. |
[2] | Lijuan Zhao, Zhe Tan, Xiaoguang Zhang, Qijun Zhang, Wei Wang, Qiang Deng, Jie Ma, De'an Pan. Research on process modeling and simulation of spent lead paste desulfurization enhanced reactor [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 293-303. |
[3] | Mingzhi Li, Zhikai Liu, Wang Yao, Chao Xu, Yangping Yu, Mei Yang, Guangwen Chen. Ultrasonic cavitation-enabled microfluidic approach toward the continuous synthesis of cesium lead halide perovskite nanocrystals [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 32-41. |
[4] | Haixiang Liu, Jun Zhang, Chunlei Dong, Gang Zhu, Guanben Du, Shuduan Deng. Synthesis, performance and structure characterization of glyoxal-monomethylolurea-melamine (G-MMU-M) co-condensed resin [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 92-104. |
[5] | Minjie Shi, Nianting Chen, Yue Zhao, Cheng Yang, Chao Yan. Facile wet-chemical fabrication of bi-functional coordination polymer nanosheets for high-performance energy storage and anti-corrosion engineering [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 118-127. |
[6] | Yi Wu, Pengfei Song, Ningyan Li, Yanan Jiang, Yuan Liu. Molybdenum tailored Co0/Co2+ active pairs on a perovskite-type oxide for direct ethanol synthesis from syngas [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 279-289. |
[7] | Chen Chen, Qiong Tang, Hong Xu, Mingxing Tang, Xuekuan Li, Lei Liu, Jinxiang Dong. Alkyl-tetralin base oils synthesized from coal-based chemicals and evaluation of their lubricating properties [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 20-28. |
[8] | Kai Xue, Yanchun Xue, Jing Wang, Shuya Zhang, Xingmei Guo, Xiangjun Zheng, Fu Cao, Qinghong Kong, Junhao Zhang, Zhong Jin. KOH-assisted aqueous synthesis of ZIF-67 with high-yield and its derived cobalt selenide/carbon composites for high-performance Li-ion batteries [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 214-223. |
[9] | Feng Pan, Sugang Ma, Yu Ge, Chuanlin Fan, Qingshan Zhu. Fluidization thermal decomposition of sodium fluosilicate [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 329-337. |
[10] | Jingran Liu, Yue Wu, Jie Tang, Tao Wang, Feng Ni, Qiumin Wu, Xijiao Yang, Ayyaz Ahmad, Naveed Ramzan, Yisheng Xu. Polymeric assembled nanoparticles through kinetic stabilization by confined impingement jets dilution mixer for fluorescence switching imaging [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 89-96. |
[11] | Chen Chen, Yujie Liu, Qiong Tang, Hong Xu, Mingxing Tang, Xuekuan Li, Lei Liu, Jinxiang Dong. Tribological and rheological performance of lithium grease with poly-α-olefin and alkyl-tetralin as base oils [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 180-192. |
[12] | Shuang Qiu, Yonghou Xiao, Haoran Wu, Shengnan Lu, Qidong Zhao, Gaohong He. One-pot synthesis of bimetallic CeCu-SAPO-34 for high-efficiency selective catalytic reduction of nitrogen oxides with NH3 at low temperature [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 193-202. |
[13] | Wufeng Wu, Xilu Hong, Jiang Fan, Yanying Wei, Haihui Wang. Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 299-313. |
[14] | Lianlian Zhao, Fufu Di, Xiaonan Wang, Sumbal Farid, Suzhen Ren. Constructing a hollow core-shell structure of RuO2 wrapped by hierarchical porous carbon shell with Ru NPs loading for supercapacitor [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 93-100. |
[15] | Zhihao Zhu, Ying Sun, Haijun Yu, Meng Li, Xingming Jie, Guodong Kang, Yiming Cao. Effect of polytetrafluoroethylene hollow fiber microstructure on formaldehyde carbonylation performance in membrane contactor [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 148-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||