Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (3): 685-697.DOI: 10.1016/j.cjche.2019.04.022
• Fluid Dynamics and Transport Phenomena • Previous Articles Next Articles
Vivekanand S. V. B., Raju V. R. K.
Received:
2019-02-02
Revised:
2019-04-10
Online:
2020-06-11
Published:
2020-03-28
Contact:
Raju V. R. K.
Supported by:
Vivekanand S. V. B., Raju V. R. K.
通讯作者:
Raju V. R. K.
基金资助:
Vivekanand S. V. B., Raju V. R. K.. Effect of wall temperature modulation on the heat transfer characteristics of droplet-train flow inside a rectangular microchannel[J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 685-697.
Vivekanand S. V. B., Raju V. R. K.. Effect of wall temperature modulation on the heat transfer characteristics of droplet-train flow inside a rectangular microchannel[J]. 中国化学工程学报, 2020, 28(3): 685-697.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2019.04.022
[1] M. Fabbri, S. Jiang, V.K.A. Dhir, Comparative study of cooling of high power density electronics using sprays and microjets, J. Heat Transfer 127(2005) 38. [2] G.L. Morini, Single-phase convective heat transfer in microchannels:A review of experimental results, Int. J. Therm. Sci. 43(2004) 631-651. [3] N.M.R. Jeffers, J. Punch, E.J. Walsh, M. McLean, Heat transfer from novel target surface structures to a normally impinging, submerged and confined water jet, J. Therm. Sci. Eng. Appl. 031001(2009) 1. [4] Z. Dai, Z. Guo, D.F. Fletcher, B.S. Haynes, Taylor flow heat transfer in microchannels-Unification of liquid-liquid and gas-liquid results, Chem. Eng. Sci. 138(2015) 140-152. [5] T. Bandara, N.-T. Nguyen, G. Rosengarten, Slug flow heat transfer in microchannels:a numerical study, Chem. Eng. Sci. 126(2015) 283-295. [6] P.A. Walsh, E.J. Walsh, Y.S. Muzychka, Heat transfer model for gas-liquid slug flows under constant flux, Int. J. Heat Mass Transf. 53(2010) 3193-3201. [7] S.S.Y. Leung, R. Gupta, D.F. Fletcher, B.S. Haynes, Effect of flow characteristics on Taylor flow heat transfer, Ind. Eng. Chem. Res. 51(2012) 2010-2020. [8] S.S.Y. Leung, Y. Liu, D.F. Fletcher, B.S. Haynes, Heat transfer in well-characterised Taylor flow, Chem. Eng. Sci. 65(2010) 6379-6388. [9] D. Lakehal, G. Larrignon, C. Narayanan, Computational heat transfer and two-phase flow topology in miniature tubes, Microfluid. Nanofluid. 4(2008) 261-271. [10] C. Horvath, B.A. Solomon, J.M. Engasser, Measurement of radial transport in slug flow using enzyme tubes, Ind. Eng. Chem. Fundam. 12(1973) 431-439. [11] Q. He, Y. Hasegawa, N. Kasagi, Heat transfer modeling of gas-liquid slug flow without phase change in a microtube, Int. J. Heat Fluid Flow 31(2010) 126-136. [12] R. Gupta, D.F. Fletcher, B.S. Haynes, CFD modeling of flow and heat transfer in the Taylor flow regime, Chem. Eng. Sci. 65(2010) 2094-2107. [13] K. Fukagata, N. Kasagi, P. Ua-arayaporn, T. Himeno, Numerical simulation of gasliquid two-phase flow and convective heat transfer in a micro tube, Int. J. Heat Fluid Flow 28(2007) 72-82. [14] A.R. Betz, D. Attinger, Can segmented flow enhance heat transfer in microchannel heat sinks? Int. J. Heat Mass Transf. 53(2010) 3683-3691. [15] A.N. Asadolahi, R. Gupta, D.F. Fletcher, B.S. Haynes, CFD approaches for the simulation of hydrodynamics and heat transfer in Taylor flow, Chem. Eng. Sci. 66(2011) 5575-5584. [16] A.N. Asadolahi, R. Gupta, S.S.Y. Leung, D.F. Fletcher, B.S. Haynes, Validation of a CFD model of Taylor flow hydrodynamics and heat transfer, Chem. Eng. Sci. 69(2012) 541-552. [17] K.a. Triplett, S.M. Ghiaasiaan, S.I. Abdel-Khalik, A. LeMouel, B.N. McCord, Gas-liquid two-phase flow in microchannels:Part II:Void fraction and pressure drop, Int. J. Multiphase Flow 25(1999) 395-410. [18] K.a. Triplett, S.M. Ghiaasiaan, S.I. Abdel-Khalik, D.L. Sadowski, Gas-liquid two-phase flow in microchannels Part I:Two-phase flow patterns, Int. J. Multiph. Flow 25(1999) 377-394. [19] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39(1981) 201-225. [20] A. Mehdizadeh, S.A. Sherif, W.E. Lear, Numerical simulation of thermofluid characteristics of two-phase slug flow in microchannels, Int. J. Heat Mass Transf. 54(2011) 3457-3465. [21] T. Bauer, M. Schubert, R. Lange, R.Sh Abiev, Intensification of heterogeneous catalytic gas-fluid interactions in reactors with a multichannel monolithic catalyst, Russ. J. Appl. Chem. 79(7) (2006) 1057-1066. [22] R. Abiev, I.V. Lavretsov, Intensification of mass transfer from liquid to capillary wall by Taylor vortices in minichannels, bubble velocity and pressure drop, Chem. Eng. Sci. 74(2012) 59-68. [23] R. Abiev, Bubbles velocity, Taylor circulation rate and mass transfer model for slug flow in milli and microchannels, Chem. Eng. J. 227(2013) 66-79. [24] R. Gupta, D.F. Fletcher, B.S. Haynes, On the CFD modelling of Taylor flow in microchannels, Chem. Eng. Sci. 64(2009) 2941-2950. [25] R. Gupta, S.S.Y. Leung, R. Manica, D.F. Fletcher, B.S. Haynes, Hydrodynamics of liquid-liquid Taylor flow in microchannels, Chem. Eng. Sci. 92(2013) 180-189. [26] M.N. Kashid, et al., Internal circulation within the liquid slugs of a liquid-liquid slugflow capillary microreactor, Ind. Eng. Chem. Res. 44(2005) 5003-5010. [27] T. Taha, Z.F. Cui, CFD modelling of slug flow in vertical tubes, Chem. Eng. Sci. 61(2006) 676-687. [28] E.T. White, R.H. Beardmore, The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes, Chem. Eng. Sci. 17(1962) 351-361. [29] V. Talimi, Y.S. Muzychka, S. Kocabiyik, Slug flow heat transfer in square microchannels, Int. J. Heat Mass Transf. 62(2013) 752-760. [30] J. Zhang, D.F. Fletcher, W. Li, Heat transfer and pressure drop characteristics of gas-liquid Taylor flow in mini ducts of square and rectangular cross-sections, Int. J. Heat Mass Transf. 103(2016) 45-56. [31] R.S. Abiev, Effect of contact-angle hysteresis on the pressure drop under slug flow conditions in minichannels and microchannels, Theor. Found. Chem. Eng. 49(4) (2015) 414-421. [32] Y. Chen, R. Kulenovic, R. Mertz, Numerical study on the formation of Taylor bubbles in capillary tubes, Int. J. Therm. Sci. 48(2009) 234-242. [33] S.D. Svetlov, R.S. Abiev, Formation mechanisms and lengths of the bubbles and liquid slugs in a coaxial-spherical micro mixer in Taylor flow regime, Chem. Eng. J. 354(2018) 269-284. [34] Q. Lou, M. Yang, H. Xu, Numerical investigations of gas-liquid two-phase flows in microchannels, Proc IMechE Part C J Mech Eng Sci. 232(3) (2018) 466-476. [35] S.V.B. Vivekanand, V.R.K. Raju, Effect of wall contact angle and carrier phase velocity on the flow physics of gas-liquid Taylor flows inside microchannels, Chem. Pap. 75(5) (2019) 1173-1188, https://doi.org/10.1007/s11696-018-0668-3(2018). [36] R. Abiev, Modern state and perspectives of micro technique application in chemical industry, Russ. J. Gen. Chem. 82(12) (2012) 2019-2024. [37] R. Gupta, D.F. Fletcher, B.S. Haynes, Taylor flow in microchannels:A review of experimental and computational work, J Comput Multiph Flows 2(2010) 1-32. [38] V. Talimi, Y.S. Muzychka, S. Kocabiyik, A review on numerical studies of slug flow hydrodynamics and heat transfer in microtubes and microchannels, Int. J. Multiphase Flow 39(2012) 88-104. [39] M.M. Farhangi, M. Passandideh-Fard, H. Moin, Numerical study of bubble rise and interaction in a viscous liquid, Int. J. Comut. Fluid Dyn. 24(1-2) (2010) 13-28. [40] A. Asthana, I. Zinovik, C. Weinmueller, D. Poulikakos, Significant Nusselt number increase in microchannels with a segmented flow of two immiscible liquids:An experimental study, Int. J. Heat Mass Transf. 54(2011) 1456-1464. [41] D.B. Tuckerman, R.F.W. Pease, High-performance heat sinking for VLSI, IEEE Electron Device Lett. 2(1981) 126-129. [42] M. Mac Giolla Eain, V. Egan, J. Punch, Local Nusselt number enhancements in liquid-liquid Taylor flows, Int. J. Heat Mass Transf. 80(2015) 85-97. [43] P. Urbant, A. Leshansky, Y. Halupovich, On the forced convective heat transport in a droplet-laden flow in microchannels, Microfluid. Nanofluid. 4(2008) 533-542. [44] Z. Che, T.N. Wong, N.T. Nguyen, Heat transfer enhancement by recirculating flow within liquid plugs in microchannels, Int. J. Heat Mass Transf. 55(2012) 1947-1956. [45] Z. Che, T.N. Wong, N.T. Nguyen, An analytical model for plug flow in microcapillaries with circular cross section, Int. J. Heat Fluid Flow 32(2011) 1005-1013. [46] Z. Che, T.N. Wong, N.T. Nguyen, Heat transfer in plug flow in cylindrical microcapillaries with constant surface heat flux, Int. J. Therm. Sci. 64(2013) 204-212. [47] M. Fischer, D. Juric, D. Poulikakos, Large convective heat transfer enhancement in microchannels with a train of coflowing immiscible or colloidal droplets, J. Heat Transfer 132(2010), 112402. [48] T. Bandara, N.-T. Nguyen, G. Rosengarten, Slug flow heat transfer without phase change in microchannels:A review, Chem. Eng. Sci. 126(2015) 283-295. [49] J. Mantle, M. Kazmierczak, B. Hiawy, The effect of temperature modulation on natural convection in a horizontal layer heated from below:High-Rayleigh-number experiments, J. Heat Transf. 116(3) (1994) 614-620. [50] Z. Nikkhah, A. Karimipour, M.R. Safaei, P. Forghani-Tehrani, M. Goodarzi, M. Dahari, S. Wongwises, Forced convective heat transfer of water/functionalized multi-walled carbon nanotube nanofluids in a microchannel with oscillating heat flux and slip boundary condition, Int. Comm. in Heat and Mass Transfer 68(2015) 69-77. [51] K.D. Cole, Steady-periodic heating in parallel-plate microchannel flow with participating walls, Int. J. Heat Mass Transf. 53(5-6) (2010) 870-878. [52] ANSYS FLUENT 12.0 Theory Guide, Access date:13th March 2019. [53] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100(1992) 335-354. [54] S.V.B. Vivekanand, V.R.K. Raju, Simulation of evaporation heat transfer in a rectangular microchannel, Procedia Engineering 127(2015). [55] F.P. Bretherton, The motion of long bubbles in tubes, J. Fluid Mech. 10(1961) 166-188. [56] R.K. Shah, Laminar flow friction and forced convection heat transfer in ducts of arbitrary geometry, Int. J. Heat Mass Transf. 18(1975) 849-862. [57] P. Aussillous, D. Quere, Quick deposition of a fluid on the wall of a tube, Phys. Fluids 12(10) (2000) 2367-2371. [58] Y. Han, N. Shikazono, Measurement of the liquid film thickness in micro tube slug flow, Int. J. Heat Fluid Flow 30(5) (2009) 842-853. [59] M. Mac Giolla Eain, V. Egan, J. Punch, Film thickness measurements in liquid-liquid slug flow regimes, Int. J. Heat Fluid Flow 44(2013) 515-523. [60] H.L. Goldsmith, S.G. Mason, The flow of suspensions through tubes-II single large bubbles, J. Colloid Interface Sci. 18(1963) 237-261. [61] W.L. Olbricht, D.M. Kung, The deformation and breakup of liquid drops in low Reynolds number flow through a capillary, Phys. Fluids 4(1992) 1347-1354. |
[1] | Xuejing He, Zhenlin Li, Ji Wang, Hai Yu. Effects of tube cross-sectional shapes on flow pattern, liquid film and heat transfer of n-pentane across tube bundles [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 16-25. |
[2] | Jiahao Xing, Huaizhi Han, Ruitian Yu, Wen Luo. Numerical simulation of flow and heat transfer of n-decane in sub-millimeter spiral tube at supercritical pressure [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 173-185. |
[3] | Chengang Yang, Huaizhi Han, Quan Zhu, Xiangyuan Li. Cracking and buoyancy effect on hydrocarbon endothermic and heat transfer characteristics in rectangular mini-channel [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 242-254. |
[4] | Ming Chen, Huiyan Jiao, Jun Li, Zhibin Wang, Feng He, Yang Jin. Liquid–liquid two-phase flow in a wire-embedded concentric microchannel: Flow pattern and mass transfer performance [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 281-289. |
[5] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
[6] | Chunxin Fan, Zini Guo, Jianhong Luo. Study on an improved rotating microchannel separator in the intensification for demulsification and separation process [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 181-191. |
[7] | Qinyan Wang, Yang Jin, Jun Li, Yongbo Zhou, Ming Chen. Study on liquid–liquid two-phase mass transfer characteristics in the microchannel with deformed insert [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 114-126. |
[8] | Yongbo Zhou, Yang Jin, Jun Li, Qinyan Wang, Ming Chen. Numerical study on the hydrodynamics behavior of a central insert microchannel [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 361-373. |
[9] | Kuo Lin, Zhongjie Shen, Qinfeng Liang, Jianliang Xu, Haifeng Liu. The study of the effect of gas-phase fluctuation on slag flow and refractory brick corrosion in the slag tapping hole of an entrained-flow gasifier [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 271-281. |
[10] | Feng Jiang, Di Xu, Ruijia Li, Guopeng Qi, Xiulun Li. Particle collision behavior and heat transfer performance in a Na2SO4 circulating fluidized bed evaporator [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 40-52. |
[11] | Ye Zhang, Yong Gao, Peng Wang, Duo Na, Zhenming Yang, Jinsong Zhang. Solvent extraction with a three-dimensional reticulated hollow-strut SiC foam microchannel reactor [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 53-62. |
[12] | Yaran Yin, Xianming Zhang, Chunying Zhu, Taotao Fu, Youguang Ma. Formation characteristics of Taylor bubbles in a T-junction microchannel with chemical absorption [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 214-222. |
[13] | Zhen Chen, Chunying Zhu, Taotao Fu, Xiqun Gao, Youguang Ma. Formation dynamics and size prediction of bubbles for slurry system in T-shape microchannel [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 153-161. |
[14] | Mehdi Miansari, Mehdi Rajabtabar Darvishi, Davood Toghraie, Pouya Barnoon, Mojtaba Shirzad, As'ad Alizadeh. Numerical investigation of grooves effects on the thermal performance of helically grooved shell and coil tube heat exchanger [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 424-434. |
[15] | Zhijie Shen, Jingchun Min. Non-equilibrium thermodynamic analysis of coupled heat and moisture transfer across a membrane [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 497-506. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||