[1] S.F. Yanamota, M.W. Spatz, C.J. Seaton, Low GWP heat transfer composition containing difluoromethane, fluoroethane and 1,3,3,3-tetrafluoropropene, CN Pat. (2015) 105189692A. [2] J. Yang, X.Y. Jia, J.T. Wu, Vapor phase pvTx measurements of binary mixtures of difluoromethane (R32) and 2,3,3,3-tetrafluoroprop-1-ene (R1234yf), J. Chem. Thermodyn. 134(2019) 41-51. [3] S. Bobbo, C. Zilio, M. Scattolini, L. Fedele, R1234yf as a substitute of R134a in automotive air conditioning. Solubility measurements in two commercial PAG oils, Int. J. Refrig. 40(2014) 302-308. [4] D. Kim, M.L. Klein, Ab initio molecular dynamics study of the superacid system SbF5/HF solution, J. Phys. Chem. B 104(43) (2000) 10074-10079. [5] P.M. Esteves, A. Ramirez-Solis, C.J.A. Mota, The nature of superacid electrophilic species in HF/SbF5:A density functional theory study, J. Am. Chem. Soc. 124(11) (2002) 2672-2677. [6] J. Salome, C. Mauger, S. Brunet, V. Schanen, Synthesis conditions and activity of various Lewis acids for the fluorination of trichloromethoxy-benzene by HF in liquid phase, J. Fluor. Chem. 125(12) (2004) 1947-1950. [7] C. Gustavo, H.M. William, K. David, Y. Frank, Process of the preparation of difluoromethane, World Pat. 99(25670) (1999). [8] T. Tsuda, Y. Yamada, T. Sbibanuma, Process for the preparation of difluoromethane, US Pat., 5744659(1998). [9] Y. Yamada, J.J. Chai, T. Tsuda, Manufacturing Method of Difluoromethane. CN Pat, 19971151724. [10] K. Tsuji, K. Oshiro, T. Nakajo, Fluorination catalyst and fluorination process, Europe Pat., 629440(1994). [11] H.E. Yang, H.D. Quan, M. Tamura, A. Sekiya, Investigation into antimony pentafluoride-based catalyst in preparing organo-fluorine compounds, J. Mol. Catal. A Chem. 233(1-2) (2005) 99-104. [12] M.B. Plutschack, B. Pieber, K. Gilmore, P.H. Seeberger, The Hitchhiker's guide to flow chemistry(II), Chem. Rev. 117(18) (2017) 11796-11893. [13] M. Movsisyan, E.I.P. Delbeke, J.K.E.T. Berton, C. Battilocchio, S.V. Ley, C.V. Stevens, Taming hazardous chemistry by continuous flow technology, Chem. Soc. Rev. 45(18) (2016) 4892-4928. [14] J.A.M. Lummiss, P.D. Morse, R.L. Beingessner, T.F. Jamison, Towards more efficient, Greener Syntheses through Flow Chemistry. Chem. Rec. 17(7) (2017) 667-680. [15] M.T. Rostami, A. Daneshgar, Modeling and experimental studies of methyl methacrylate polymerization in a tubular reactor, Chin. J. Chem. Eng. 24(12) (2016) 1655-1663. [16] S. Ramji, A. Vir, S. Pushpavanam, Two phase gas-liquid stratified laminar flows in tubular reactors sustaining liquid phase reactions, Chem. Eng. J. 356(2019) 609-621. [17] L. Degennaro, F. Fanelli, A. Giovine, R. Luisi, External trapping of halomethyllithium enabled by flow microreactors, Adv. Synth. Catal. 357(1) (2015) 21-27. [18] H. Kim, H.J. Lee, D.P. Kim, Integrated one-flow synthesis of heterocyclic thioquinazolinones through serial microreactions with two organolithium intermediates, Angew. Chem., Int. Ed. 54(6) (2015) 1877-1880. [19] J.A. Newby, D.W. Blaylock, P.M. Witt, R.M. Turner, P.L. Heider, B.H. Harji, D.L. Browne, S.V. Ley, Reconfiguration of a continuous flow platform for extended operation:application to a cryogenic fluorine-directed ortho-lithiation reaction, Org. Process. Res. Dev. 18(10) (2014) 1221-1228. [20] B.J. Deadman, S.G. Collins, A.R. Maguire, Taming hazardous chemistry in flow:The continuous processing of diazo and diazonium compounds, Chem. Eur. J. 21(6) (2015) 2298-2308. [21] S.T.R. Muller, T. Wirth, Diazo compounds in continuous-flow technology, Chemsuschem 8(2) (2015) 245-250. [22] M. Struempel, B. Ondruschka, R. Daute, A. Stark, Making diazomethane accessible for R&D and industry:generation and direct conversion in a continuous microreactorset-up, Green Chem. 10(1) (2008) 41-43. [23] P. Plouffe, A. Macchi, D.M. Roberge, From batch to continuous chemical synthesis-A toolbox approach, Org. Process. Res. Dev. 18(11) (2014) 1286-1294. [24] H. Lowe, G. Wei, M. Jiang, C. Hofmann, H.J. Kost, C. Schutt, Multi-step processing in a microstructured flow reactor:Direct nitration of propane-A proof of principle, Green Process. Synth. 1(5) (2012) 439-448. [25] D. Cantillo, M. Damm, D. Dallinger, M. Bauser, M. Berger, C.O. Kappe, Sequential nitration/hydrogenation protocol for the synthesis of triaminophloroglucinol:Safe generation and use of an explosive intermediate under continuous-flow conditions, Org. Process. Res. Dev. 18(11) (2014) 1360-1366. [26] O. Bleie, M.F. Roberto, T.I. Dearing, C.W. Branham, O.M. Kvalheim, B.J. Marquardt, Moffat-Swern oxidation of alcohols:Translating a batch reaction to a continuousflow reaction, J. Flow Chem. 5(3) (2015) 183-189. [27] J.R. McConnell, J.E. Hitt, E.D. Daugs, T.A. Rey, The Swern oxidation:Development of a high-temperature semicontinuous process, Org. Process. Res. Dev. 12(5) (2008) 940-945. [28] H. Ouyang, H.L. He, L.Y. Zhou, Y.J. Zhou, Reaction mechanism in liquid phase fluorinated catalyed synthesizing difluoromethane and the corrosivity, Chem. Pro. Tec. 19(1) (2012) 1-31(in Chinese). [29] W.E. Morgan, W.J. Stec, J.R. Vanwazer, Inner-orbital binding-energy shifts of antimony and bismuth compounds, Inorg. Chem. 12(4) (1973) 953-955. |