Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (7): 1866-1874.DOI: 10.1016/j.cjche.2020.03.012
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Shuai Wang1,2, Guobao Sima1,2, Ying Cui1,2, Longjun Chang1, Linhuo Gan1,2
Received:
2019-12-21
Revised:
2020-02-08
Online:
2020-08-31
Published:
2020-07-28
Contact:
Linhuo Gan
Supported by:
Shuai Wang1,2, Guobao Sima1,2, Ying Cui1,2, Longjun Chang1, Linhuo Gan1,2
通讯作者:
Linhuo Gan
基金资助:
Shuai Wang, Guobao Sima, Ying Cui, Longjun Chang, Linhuo Gan. Efficient hydrolysis of cellulose to glucose catalyzed by lignin-derived mesoporous carbon solid acid in water[J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1866-1874.
Shuai Wang, Guobao Sima, Ying Cui, Longjun Chang, Linhuo Gan. Efficient hydrolysis of cellulose to glucose catalyzed by lignin-derived mesoporous carbon solid acid in water[J]. 中国化学工程学报, 2020, 28(7): 1866-1874.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.03.012
[1] Q.D. Hou, M.N. Zhen, W.Z. Li, L. Liu, J.P. Liu, S.Q. Zhang, Y.F. Nie, C.Y.L. Bai, X.Y. Bai, M.T. Ju, Efficient catalytic conversion of glucose into 5-hydroxymethylfurfural by aluminum oxide in ionic liquid, Appl. Catal., B:Environ. 253(2019) 1-10. [2] G. Qiu, C.P. Huang, X.L. Sun, B.H. Chen, Highly active niobium-loaded montmorillonite catalysts for the production of 5-hydroxymethylfurfural from glucose, Green Chem. 21(2019) 3930-3939. [3] D. Garcés, L. Faba, E. Díaz, S. Ordóñez, Aqueous-phase transformation of glucose into hydroxymethylfurfural and levulinic acid by combining homogeneous and heterogeneous catalysis, ChemSusChem 12(2019) 924-934. [4] Z.U. Ahmad, L.G. Yao, J. Wang, D.D. Gang, F. Islam, Q.Y. Lian, M.E. Zappi, Neodymium embedded ordered mesoporous carbon (OMC) for enhanced adsorption of sunset yellow:Characterizations, adsorption study and adsorption mechanism, Chem. Eng. J. 359(2019) 814-826. [5] S. Wang, L. Lyu, G.B. Sima, Y. Cui, B.X. Li, X.Q. Zhang, L.H. Gan, Optimization of fructose dehydration to 5-hydroxymethylfurfural catalyzed by SO3H-bearing ligninderived ordered mesoporous carbon, Korean J. Chem. Eng. 36(2019) 1042-1050. [6] J. Du, L. Liu, Y.F. Yu, Y. Zhang, A.B. Chen, Monomer self-deposition for ordered mesoporous carbon for high-performance supercapacitors, ChemSusChem 12(2019) 2409-2414. [7] Y. Meng, D. Gu, F.Q. Zhang, Y.F. Shi, L. Cheng, D. Feng, Z.X. Wu, Z.X. Chen, Y. Wan, A. Stein, D.Y. Zhao, A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly, Chem. Mater. 18(2006) 4447-4464. [8] T. Szabo, P. Maroni, I. Szilagyi, Size-dependent aggregation of graphene oxide, Carbon 160(2020) 145-155. [9] X.P. Hu, J.J. Xi, Y.Y. Xia, F.Q. Zhao, B.Z. Zeng, Space-confined synthesis of ordered mesoporous carbon doped with single-layer MoS2-boron for the voltammetric determination of theophylline, Microchim. Acta 186(2019) 694. [10] H. Xie, Y.J. Zhao, Y. Tian, X.F. Wang, M.F. Yan, Tailored synthesis from rhombic dodecahedron to spherical ordered mesoporous carbon nanoparticles via one-step strategy, Carbon 152(2019) 295-304. [11] S. Wang, G.B. Sima, Y. Cui, L.J. Chang, L.H. Gan, Preparations of lignin-derived ordered mesoporous carbon by self-assembly in organic solvent and aqueous solution:comparison in textural property, Mater. Lett. 264(2020) 127318. [12] S. Wang, L.Q. Zhang, G.B. Sima, Y. Cui, L.H. Gan, Efficient hydrolysis of bagasse cellulose to glucose by mesoporous carbon solid acid derived from industrial lignin, Chem. Phys. Lett. 736(2019) 136808. [13] R.M. Gong, Z.H. Ma, X. Wang, Y. Han, Y.Z. Guo, G.W. Sun, Y. Li, J.H. Zhou, Sulfonicacid-functionalized carbon fiber from waste newspaper as a recyclable carbon based solid acid catalyst for the hydrolysis of cellulose, RSC Adv. 9(2019) 28902-28907. [14] G. Chen, B.S. Fang, Preparation of solid acid catalyst from glucose-starch mixture for biodiesel production, Bioresour. Technol. 102(2011) 2635-2640. [15] M. Liu, S.G. Jia, Y.Y. Gong, C.S. Song, X.W. Guo, Effective hydrolysis of cellulose into glucose over sulfonated sugar-derived carbon in an ionic liquid, Ind. Eng. Chem. Res. 52(2013) 8167-8173. [16] S.L. Hu, T.J. Smith, W.Y. Lou, M.H. Zong, Efficient hydrolysis of cellulose over a novel sucralose-derived solid acid with cellulose-binding and catalytic sites, J. Agric. Food Chem. 62(2014) 1905-1911. [17] L.H. Gan, L. Lyu, T.R. Shen, S. Wang, Sulfonated lignin-derived ordered mesoporous carbon with highly selective and recyclable catalysis for the conversion of fructose into 5-hydroxymethylfurfural, Appl. Catal., A:Gen. 574(2019) 132-143. [18] P. Gao, A.Q. Wang, X.D. Wang, T. Zhang, Synthesis of highly ordered Ir-containing mesoporous carbon materials by organic-organic self-assembly, Chem. Mater. 20(2008) 1881-1888. [19] Y.B. Wang, H.Y. Zhao, G.H. Zhao, Iron-copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fenton catalyst for the degradation of organic contaminants, Appl. Catal., B:Environ. 164(2015) 396-406. [20] Y. Wang, B. Li, C.L. Zhang, X.F. Song, H. Tao, S.F. Kang, X. Li, A simple solid-liquid grinding/templating route for the synthesis of magnetic iron/graphitic mesoporous carbon composites, Carbon 51(2013) 397-403.[1] Q.D. Hou, M.N. Zhen, W.Z. Li, L. Liu, J.P. Liu, S.Q. Zhang, Y.F. Nie, C.Y.L. Bai, X.Y. Bai, M.T. Ju, Efficient catalytic conversion of glucose into 5-hydroxymethylfurfural by aluminum oxide in ionic liquid, Appl. Catal., B:Environ. 253(2019) 1-10. [2] G. Qiu, C.P. Huang, X.L. Sun, B.H. Chen, Highly active niobium-loaded montmorillonite catalysts for the production of 5-hydroxymethylfurfural from glucose, Green Chem. 21(2019) 3930-3939. [3] D. Garcés, L. Faba, E. Díaz, S. Ordóñez, Aqueous-phase transformation of glucose into hydroxymethylfurfural and levulinic acid by combining homogeneous and heterogeneous catalysis, ChemSusChem 12(2019) 924-934. [4] Z.U. Ahmad, L.G. Yao, J. Wang, D.D. Gang, F. Islam, Q.Y. Lian, M.E. Zappi, Neodymium embedded ordered mesoporous carbon (OMC) for enhanced adsorption of sunset yellow:Characterizations, adsorption study and adsorption mechanism, Chem. Eng. J. 359(2019) 814-826. [5] S. Wang, L. Lyu, G.B. Sima, Y. Cui, B.X. Li, X.Q. Zhang, L.H. Gan, Optimization of fructose dehydration to 5-hydroxymethylfurfural catalyzed by SO3H-bearing ligninderived ordered mesoporous carbon, Korean J. Chem. Eng. 36(2019) 1042-1050. [6] J. Du, L. Liu, Y.F. Yu, Y. Zhang, A.B. Chen, Monomer self-deposition for ordered mesoporous carbon for high-performance supercapacitors, ChemSusChem 12(2019) 2409-2414. [7] Y. Meng, D. Gu, F.Q. Zhang, Y.F. Shi, L. Cheng, D. Feng, Z.X. Wu, Z.X. Chen, Y. Wan, A. Stein, D.Y. Zhao, A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly, Chem. Mater. 18(2006) 4447-4464. [8] T. Szabo, P. Maroni, I. Szilagyi, Size-dependent aggregation of graphene oxide, Carbon 160(2020) 145-155. [9] X.P. Hu, J.J. Xi, Y.Y. Xia, F.Q. Zhao, B.Z. Zeng, Space-confined synthesis of ordered mesoporous carbon doped with single-layer MoS2-boron for the voltammetric determination of theophylline, Microchim. Acta 186(2019) 694. [10] H. Xie, Y.J. Zhao, Y. Tian, X.F. Wang, M.F. Yan, Tailored synthesis from rhombic dodecahedron to spherical ordered mesoporous carbon nanoparticles via one-step strategy, Carbon 152(2019) 295-304. [11] S. Wang, G.B. Sima, Y. Cui, L.J. Chang, L.H. Gan, Preparations of lignin-derived ordered mesoporous carbon by self-assembly in organic solvent and aqueous solution:comparison in textural property, Mater. Lett. 264(2020) 127318. [12] S. Wang, L.Q. Zhang, G.B. Sima, Y. Cui, L.H. Gan, Efficient hydrolysis of bagasse cellulose to glucose by mesoporous carbon solid acid derived from industrial lignin, Chem. Phys. Lett. 736(2019) 136808. [13] R.M. Gong, Z.H. Ma, X. Wang, Y. Han, Y.Z. Guo, G.W. Sun, Y. Li, J.H. Zhou, Sulfonicacid-functionalized carbon fiber from waste newspaper as a recyclable carbon based solid acid catalyst for the hydrolysis of cellulose, RSC Adv. 9(2019) 28902-28907. [14] G. Chen, B.S. Fang, Preparation of solid acid catalyst from glucose-starch mixture for biodiesel production, Bioresour. Technol. 102(2011) 2635-2640. [15] M. Liu, S.G. Jia, Y.Y. Gong, C.S. Song, X.W. Guo, Effective hydrolysis of cellulose into glucose over sulfonated sugar-derived carbon in an ionic liquid, Ind. Eng. Chem. Res. 52(2013) 8167-8173. [16] S.L. Hu, T.J. Smith, W.Y. Lou, M.H. Zong, Efficient hydrolysis of cellulose over a novel sucralose-derived solid acid with cellulose-binding and catalytic sites, J. Agric. Food Chem. 62(2014) 1905-1911. [17] L.H. Gan, L. Lyu, T.R. Shen, S. Wang, Sulfonated lignin-derived ordered mesoporous carbon with highly selective and recyclable catalysis for the conversion of fructose into 5-hydroxymethylfurfural, Appl. Catal., A:Gen. 574(2019) 132-143. [18] P. Gao, A.Q. Wang, X.D. Wang, T. Zhang, Synthesis of highly ordered Ir-containing mesoporous carbon materials by organic-organic self-assembly, Chem. Mater. 20(2008) 1881-1888. [19] Y.B. Wang, H.Y. Zhao, G.H. Zhao, Iron-copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fenton catalyst for the degradation of organic contaminants, Appl. Catal., B:Environ. 164(2015) 396-406. [20] Y. Wang, B. Li, C.L. Zhang, X.F. Song, H. Tao, S.F. Kang, X. Li, A simple solid-liquid grinding/templating route for the synthesis of magnetic iron/graphitic mesoporous carbon composites, Carbon 51(2013) 397-403.[1] Q.D. Hou, M.N. Zhen, W.Z. Li, L. Liu, J.P. Liu, S.Q. Zhang, Y.F. Nie, C.Y.L. Bai, X.Y. Bai, M.T. Ju, Efficient catalytic conversion of glucose into 5-hydroxymethylfurfural by aluminum oxide in ionic liquid, Appl. Catal., B:Environ. 253(2019) 1-10. [2] G. Qiu, C.P. Huang, X.L. Sun, B.H. Chen, Highly active niobium-loaded montmorillonite catalysts for the production of 5-hydroxymethylfurfural from glucose, Green Chem. 21(2019) 3930-3939. [3] D. Garcés, L. Faba, E. Díaz, S. Ordóñez, Aqueous-phase transformation of glucose into hydroxymethylfurfural and levulinic acid by combining homogeneous and heterogeneous catalysis, ChemSusChem 12(2019) 924-934. [4] Z.U. Ahmad, L.G. Yao, J. Wang, D.D. Gang, F. Islam, Q.Y. Lian, M.E. Zappi, Neodymium embedded ordered mesoporous carbon (OMC) for enhanced adsorption of sunset yellow:Characterizations, adsorption study and adsorption mechanism, Chem. Eng. J. 359(2019) 814-826. [5] S. Wang, L. Lyu, G.B. Sima, Y. Cui, B.X. Li, X.Q. Zhang, L.H. Gan, Optimization of fructose dehydration to 5-hydroxymethylfurfural catalyzed by SO3H-bearing ligninderived ordered mesoporous carbon, Korean J. Chem. Eng. 36(2019) 1042-1050. [6] J. Du, L. Liu, Y.F. Yu, Y. Zhang, A.B. Chen, Monomer self-deposition for ordered mesoporous carbon for high-performance supercapacitors, ChemSusChem 12(2019) 2409-2414. [7] Y. Meng, D. Gu, F.Q. Zhang, Y.F. Shi, L. Cheng, D. Feng, Z.X. Wu, Z.X. Chen, Y. Wan, A. Stein, D.Y. Zhao, A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly, Chem. Mater. 18(2006) 4447-4464. [8] T. Szabo, P. Maroni, I. Szilagyi, Size-dependent aggregation of graphene oxide, Carbon 160(2020) 145-155. [9] X.P. Hu, J.J. Xi, Y.Y. Xia, F.Q. Zhao, B.Z. Zeng, Space-confined synthesis of ordered mesoporous carbon doped with single-layer MoS2-boron for the voltammetric determination of theophylline, Microchim. Acta 186(2019) 694. [10] H. Xie, Y.J. Zhao, Y. Tian, X.F. Wang, M.F. Yan, Tailored synthesis from rhombic dodecahedron to spherical ordered mesoporous carbon nanoparticles via one-step strategy, Carbon 152(2019) 295-304. [11] S. Wang, G.B. Sima, Y. Cui, L.J. Chang, L.H. Gan, Preparations of lignin-derived ordered mesoporous carbon by self-assembly in organic solvent and aqueous solution:comparison in textural property, Mater. Lett. 264(2020) 127318. [12] S. Wang, L.Q. Zhang, G.B. Sima, Y. Cui, L.H. Gan, Efficient hydrolysis of bagasse cellulose to glucose by mesoporous carbon solid acid derived from industrial lignin, Chem. Phys. Lett. 736(2019) 136808. [13] R.M. Gong, Z.H. Ma, X. Wang, Y. Han, Y.Z. Guo, G.W. Sun, Y. Li, J.H. Zhou, Sulfonicacid-functionalized carbon fiber from waste newspaper as a recyclable carbon based solid acid catalyst for the hydrolysis of cellulose, RSC Adv. 9(2019) 28902-28907. [14] G. Chen, B.S. Fang, Preparation of solid acid catalyst from glucose-starch mixture for biodiesel production, Bioresour. Technol. 102(2011) 2635-2640. [15] M. Liu, S.G. Jia, Y.Y. Gong, C.S. Song, X.W. Guo, Effective hydrolysis of cellulose into glucose over sulfonated sugar-derived carbon in an ionic liquid, Ind. Eng. Chem. Res. 52(2013) 8167-8173. [16] S.L. Hu, T.J. Smith, W.Y. Lou, M.H. Zong, Efficient hydrolysis of cellulose over a novel sucralose-derived solid acid with cellulose-binding and catalytic sites, J. Agric. Food Chem. 62(2014) 1905-1911. [17] L.H. Gan, L. Lyu, T.R. Shen, S. Wang, Sulfonated lignin-derived ordered mesoporous carbon with highly selective and recyclable catalysis for the conversion of fructose into 5-hydroxymethylfurfural, Appl. Catal., A:Gen. 574(2019) 132-143. [18] P. Gao, A.Q. Wang, X.D. Wang, T. Zhang, Synthesis of highly ordered Ir-containing mesoporous carbon materials by organic-organic self-assembly, Chem. Mater. 20(2008) 1881-1888. [19] Y.B. Wang, H.Y. Zhao, G.H. Zhao, Iron-copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fenton catalyst for the degradation of organic contaminants, Appl. Catal., B:Environ. 164(2015) 396-406. [20] Y. Wang, B. Li, C.L. Zhang, X.F. Song, H. Tao, S.F. Kang, X. Li, A simple solid-liquid grinding/templating route for the synthesis of magnetic iron/graphitic mesoporous carbon composites, Carbon 51(2013) 397-403. [21] W. Libbrecht, F. Deruyck, H. Poelman, A. Verberckmoes, J. Thybaut, J. De Clercq, P. Van der Voort, Optimization of soft templated mesoporous carbon synthesis using definitive screening design, Chem. Eng. J. 259(2015) 126-134. [22] J.M. Du, Z.M. Liu, Z.H. Li, B.X. Han, Y. Huang, Y.N. Gao, Mesoporous TiO2 with wormlike structure synthesized via interfacial surfactant assisted route, Microporous Mesoporous Mater. 83(2005) 19-24. [23] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem. 57(1985) 603-619. [24] L. Hu, X. Tang, Z. Wu, L. Lin, J.X. Xu, N. Xu, B.L. Dai, Magnetic lignin-derived carbonaceous catalyst for the dehydration of fructose into 5-hydroxymethylfurfural in dimethylsulfoxide, Chem. Eng. J. 263(2015) 299-308. [25] C. Mao, J. Zhang, M.T. Xiao, Y.J. Liu, X.Q. Zhang, Carbon-silica composites supported Pt as catalyst for asymmetric hydrogenation of ethyl 2-oxo-4-phenylbutyrate, Curr. Appl. Phys. 18(2018) 1480-1485. [26] H.X. Guo, Y.F. Lian, L.L. Yan, X.H. Qi, R.L. Smith, Cellulose-derived superparamagnetic carbonaceous solid acid catalyst for cellulose hydrolysis in an ionic liquid or aqueous reaction system, Green Chem. 15(2013) 2167-2174. [27] H.X. Guo, X.H. Qi, L.Y. Li, R.L. Smith, Hydrolysis of cellulose over functionalized glucosederived carbon catalyst in ionic liquid, Bioresour. Technol. 116(2012) 355-359. [28] X.H. Qi, M. Watanabe, T.M. Aida, R.L. Smith, Catalytic conversion of cellulose into 5-hydroxymethylfurfural in high yields via a two-step process, Cellulose 18(2011) 1327-1333. [29] L.H. Gan, J.D. Zhu, L. Lv, Cellulose hydrolysis catalyzed by highly acidic lignin-derived carbonaceous catalyst synthesized via hydrothermal carbonization, Cellulose 24(2017) 5327-5339. [30] D.-M. Lai, L. Deng, J.A. Li, B. Liao, Q.-X. Guo, Y. Fu, Hydrolysis of cellulose into glucose by magnetic solid acid, ChemSusChem 4(2011) 55-58. [31] L. Negahdar, I. Delidovich, R. Palkovits, Aqueous-phase hydrolysis of cellulose and hemicelluloses over molecular acidic catalysts:Insights into the kinetics and reaction mechanism, Appl. Catal., B:Environ. 184(2016) 285-298. [32] Q. Yang, X.J. Pan, Synthesis and application of bifunctional porous polymers bearing chloride and sulfonic acid as cellulase-mimetic solid acids for cellulose hydrolysis, BioEnergy Research 9(2016) 578-586. [33] Z.Z. Yang, R.L. Huang, W. Qi, L.P. Tong, R.X. Su, Z.M. He, Hydrolysis of cellulose by sulfonated magnetic reduced graphene oxide, Chem. Eng. J. 280(2015) 90-98. [34] L. Hu, Z. Wu, J. Xu, S.Y. Zhou, G.D. Tang, Efficient hydrolysis of cellulose over a magnetic lignin-derived solid acid catalyst in 1-butyl-3-methylimidazolium chloride, Korean J. Chem. Eng. 33(2016) 1232-1238. [35] E.B. Sangib, B.T. Meshesha, B.A. Demessie, F. Medina, Study on cellulose (96% crystalline) hydrolysis performance of sulfonated carbon catalyst in microwave-heated reactor at elevated temperatures, Biomass Conv. Bioref. (2019) 1-13. [36] Y.H. Li, S.G. Shen, C.Y. Wang, X. Peng, S.J. Yuan, The effect of difference in chemical composition between cellulose and lignin on carbon based solid acids applied for cellulose hydrolysis, Cellulose 25(2018) 1851-1863. [37] G.Z. Chen, X.C. Wang, Y.J. Jiang, X.D. Mu, H.C. Liu, Insights into deactivation mechanism of sulfonated carbonaceous solid acids probed by cellulose hydrolysis, Catal. Today 319(2019) 25-30. [38] Q.H. Zhang, M. Benoit, K.D.O. Vigier, J. Barrault, G. Jegou, M. Philippe, F. Jerome, Pretreatment of microcrystalline cellulose by ultrasounds:Effect of particle size in the heterogeneously-catalyzed hydrolysis of cellulose to glucose, Green Chem. 15(2013) 963-969. [39] L.L. Huang, H. Ye, S.F. Wang, Y. Li, Y.Z. Zhang, W.G. Ma, W.H. Yu, Z.Y. Zhou, Enhanced hydrolysis of cellulose by highly dispersed sulfonated graphene oxide, BioResources 13(2018) 8853-8870. [40] Y.J. Jiang, X.T. Li, X.C. Wang, L.Q. Meng, H.S. Wang, G.M. Peng, X.Y. Wang, X.D. Mu, Effective saccharification of lignocellulosic biomass over hydrolysis residue derived solid acid under microwave irradiation, Green Chem. 14(2012) 2162-2167. [41] Y.Y. Wu, Z.H. Fu, D.L. Yin, Q. Xu, F.L. Liu, C.L. Lu, L.Q. Mao, Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids, Green Chem. 12(2010) 696-700. [42] S.X. Hu, F. Jiang, Y.L. Hsieh, 1D lignin-based solid acid catalysts for cellulose hydrolysis to glucose and nanocellulose, ACS Sustain. Chem. Eng. 3(2015) 2566-2574. [43] S.L. Hu, T.J. Smith, W.Y. Lou, M.H. Zong, Efficient hydrolysis of cellulose over a novel sucralose-derived solid acid with cellulose-binding and catalytic sites, J. Agric. Food Chem. 62(2014) 1905-1911. [44] P.H. Hoang, N.H. Chung, Porous ZSM-5 zeolite catalyst modified with sulfonic acid functional groups for hydrolysis of biomass, J. Iran. Chem. Soc. 16(2019) 2203-2210. [45] H.X. Guo, Y.F. Lian, L.L. Yan, X.H. Qi, R.L. Smith, Cellulose-derived superparamagnetic carbonaceous solid acid catalyst for cellulose hydrolysis in an ionic liquid or aqueous reaction system, Green Chem. 15(2013) 2167-2174. [46] J.D. Zhu, L.H. Gan, B.X. Li, X. Yang, Synthesis and characteristics of lignin-derived solid acid catalysts for microcrystalline cellulose hydrolysis, Korean J. Chem. Eng. 34(2017) 110-117. [47] B. Wiredu, A.S. Amarasekara, Synthesis of a silica-immobilized bronsted acidic ionic liquid catalyst and hydrolysis of cellulose in water under mild conditions, Catal. Commun. 48(2014) 41-44. [48] Z.Y. Li, Y. Liu, C.F. Liu, S.B. Wu, W.Q. Wei, Direct conversion of cellulose into sorbitol catalyzed by a bifunctional catalyst, Bioresour. Technol. 274(2019) 190-197. [49] Q. Pang, L.Q. Wang, H. Yang, L.S. Jia, X.W. Pan, C.C. Qiu, Cellulose-derived carbon bearing -Cl and -SO3H groups as a highly selective catalyst for the hydrolysis of cellulose to glucose, RSC Adv. 4(2014) 41212-41218. [50] D. Verma, R. Tiwari, A.K. Sinha, Depolymerization of cellulosic feedstocks using magnetically separable functionalized graphene oxide, RSC Adv. 3(2013) 13265-13272. [51] T.-C. Su, Z. Fang, F. Zhang, J. Luo, X.-K. Li, Hydrolysis of selected tropical plant wastes catalyzed by a magnetic carbonaceous acid with microwave, Sci. Rep. 5(2015) 17538. [52] A. Takagaki, M. Nishimura, S. Nishimura, K. Ebitani, Hydrolysis of sugars using magnetic silica nanoparticles with sulfonic acid groups, Chem. Lett. 40(2011) 1195-1197. [53] C.B. Zhang, H.Y. Wang, F.D. Liu, L. Wang, H. He, Magnetic core-shell Fe3O4@C-SO3H nanoparticle catalyst for hydrolysis of cellulose, Cellulose 20(2013) 127-134. [54] Z.T. Chen, Q.F. Li, Y.X. Xiao, C. Zhang, Z.H. Fu, Y.C. Liu, X.F. Yi, A.M. Zheng, C.Z. Li, D.L. Yin, Acid-base synergistic catalysis of biochar sulfonic acid bearing polyamide for microwave-assisted hydrolysis of cellulose in water, Cellulose 26(2019) 751-762. [55] D.-M. Lai, L. Deng, Q.-X. Guo, Y. Fu, Hydrolysis of biomass by magnetic solid acid, Energy Environ. Sci. 4(2011) 3552-3557. [56] Z.Z. Yang, R.L. Huang, W. Qi, L.P. Tong, R.X. Su, Z.M. He, Hydrolysis of cellulose by sulfonated magnetic reduced graphene oxide, Chem. Eng. J. 280(2015) 90-98. [57] S.V.D. Vyver, L. Peng, J. Geboers, H. Schepers, F. de Clippel, C.J. Gommes, B. Goderis, P.A. Jacobs, B.F. Sels, Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose, Green Chem. 12(2010) 1560-1563. [58] S. Morales-delaRosa, J.M. Campos-Martin, J.L. Fierro, Chemical hydrolysis of cellulose into fermentable sugars through ionic liquids and antisolvent pretreatments using heterogeneous catalysts, Catal. Today 302(2018) 87-93. [59] X.H. Qi, Y.F. Lian, L.L. Yan, R.L. Smith, One-step preparation of carbonaceous solid acid catalysts by hydrothermal carbonization of glucose for cellulose hydrolysis, Catal. Commun. 57(2014) 50-54. [60] L. Hu, Z. Li, Z. Wu, L. Lin, S.Y. Zhou, Catalytic hydrolysis of microcrystalline and rice straw-derived cellulose over a chlorine-doped magnetic carbonaceous solid acid, Ind. Crop. Prod. 84(2016) 408-417. |
[1] | Baoyu Liu, Feng Xiong, Jianwen Zhang, Manna Wang, Yi Huang, Yanxiong Fang, Jinxiang Dong. Enhanced ortho-selective t–butylation of phenol over sulfonic acid functionalized mesopore MTW zeolites [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 1-7. |
[2] | Jian Han, Xinhua Liu, Shanwei Hu, Nan Zhang, Jingjing Wang, Bin Liang. Optimization of decoupling combustion characteristics of coal briquettes and biomass pellets in household stoves [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 182-192. |
[3] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 193-199. |
[4] | Tingjun Fu, Ran Wang, Kun Ren, Liangliang Zhang, Zhong Li. Intensified shape selectivity and alkylation reaction for the two-step conversion of methanol aromatization to p-xylene [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 240-250. |
[5] | Wei Yang, Yalun Ma, Xu Zhang, Fan Yang, Dong Zhang, Shengji Wu, Huanghu Peng, Zezhou Chen, Lei Che. Effect of acid-associated mechanical pretreatment on the hydrolysis behavior of pine sawdust in subcritical water [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 195-204. |
[6] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 291-305. |
[7] | Haodi Tan, Minjiao Yang, Yingquan Chen, Xu Chen, Francesco Fantozzi, Pietro Bartocci, Roman Tschentscher, Federica Barontini, Haiping Yang, Hanping Chen. Preparation of aromatic hydrocarbons from catalytic pyrolysis of digestate [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 1-9. |
[8] | Chenyang Zhao, Yinhan Cheng, Guangfei Qu, Yongheng Yuan, Fenghui Wu, Ye Liu, Shan Liu, Junyan Li, Ping Ning. High-performance liquid-phase catalytic purification of phosphine in tail gas using Pd(II)/Cu(II) composite [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 98-108. |
[9] | Qi Yang, Weikang Dai, Maoshuai Li, Jie Wei, Yi Feng, Cheng Yang, Wanxin Yang, Ying Zheng, Jie Ding, Mei-Yan Wang, Xinbin Ma. Enhanced selective hydrogenation of glycolaldehyde to ethylene glycol over Cu0-Cu+ sites [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 141-150. |
[10] | Zhenfu Wang, Jie Gao, Qinghong Shi, Xiaoyan Dong, Yan Sun. Facile purification and immobilization of organophosphorus hydrolase on protein-inorganic hybrid phosphate nanosheets [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 119-125. |
[11] | Juan Du, Aibing Chen, Senlin Hou, Xueqing Gao. Self-deposition for mesoporous carbon nanosheet with supercapacitor application [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 34-40. |
[12] | Mengting Liu, Xuexue Dong, Zengjing Guo, Aihua Yuan, Shuying Gao, Fu Yang. Enabling tandem oxidation of benzene to benzenediol over integrated neighboring V-Cu oxides in mesoporous silica [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 236-245. |
[13] | Mustapha Omenesa Idris, Claudia Guerrero-Barajas, Hyun-Chul Kim, Asim Ali Yaqoob, Mohamad Nasir Mohamad Ibrahim. Scalability of biomass-derived graphene derivative materials as viable anode electrode for a commercialized microbial fuel cell: A systematic review [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 277-292. |
[14] | Qian Zhu, Yan Zhuang, Hongqing Zhao, Peng Zhan, Cong Ren, Changsheng Su, Wenqiang Ren, Jiawen Zhang, Di Cai, Peiyong Qin. 2,5-Diformylfuran production by photocatalytic selective oxidation of 5-hydroxymethylfurfural in water using MoS2/CdIn2S4 flower-like heterojunctions [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 180-191. |
[15] | Wenjuan Yan, Puhua Sun, Chen Luo, Xingfan Xia, Zhifei Liu, Yuming Zhao, Shuxia Zhang, Liang Sun, Feng Du. PtCo-based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 101-123. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||