[1] C.F. Yao, Y.C. Hou, S.H. Ren, W.Z. Wu, K. Zhang, Y.A. Ji, H. Liu, Efficient separation of phenol from model oils using environmentally benign quaternary ammonium-based zwitterions via forming deep eutectic solvents, Chem. Eng. J. 326(2017) 620-626. [2] L. Cesari, L. Canabady-Rochelle, F. Mutelet, Extraction of phenolic compounds from aqueous solution using choline bis(trifluoromethylsulfonyl) imide, Fluid Phase Equilibr. 446(2017) 28-35. [3] Y.A. Ji, Y.C. Hou, S.H. Ren, C.F. Yao, W.Z. Wu, Highly efficient extraction of phenolic compounds from oil mixtures by trimethylamine-based dicationic ionic liquids via forming deep eutectic solvents, Fuel Process. Technol. 171(2018) 183-191. [4] R. Gingell, J. O'Donoghue, R.J. Staab, I.W. Daly, B.K. Bernard, A. Ranpuria, E.J. Wikinson, D. Woltering, P.A. Johns, S.B. Montgomery, L.E. Hannond, M.L. Leng, Phenol and Phenolics, American Cancer Society, California, 2001. [5] M. Sun, Y.B. Li, S. Sha, J.W. Gao, R.C. Wang, Y.J. Zhang, Q.Q. Hao, H.Y. Chen, Q.X. Yao, X.X. Ma, The composition and structure of n-hexane insoluble-hot benzene soluble fraction and hot benzene insoluble fraction from low temperature coal tar, Fuel 262(2020) 116511. [6] D. Li, Z. Li, W.H. Li, Q.C. Liu, Z.L. Feng, Z. Fan, Hydrotreating of low temperature coal tar to produce clean liquid fuels, J. Anal. Appl. Pyrol. 100(2013) 245-252. [7] W. Tang, M.X. Fang, H.Y. Wang, P.L. Yu, Q.H. Wang, Z.Y. Luo, Mild hydrotreatment of low temperature coal tar distillate:Product composition, Chem. Eng. J. 236(2014) 529-537. [8] Y. Zhang, Z.Y. Li, H.Y. Wang, X.P. Xuan, J.J. Wang, Efficient separation of phenolic compounds from model oil by the formation of choline derivativebased deep eutectic solvents, Sep. Purif. Technol. 163(2016) 310-318. [9] K.F. Chasib, Extraction of phenolic pollutants (phenol and pChlorophenol) from industrial wastewater, J. Chem. Eng. Data 58(2013) 1549-1564. [10] X.Y. Yang, B.J. Wang, H.Q. Luo, S.L. Yan, J. Dai, Z.S. Bai, Efficient recovery of phenol from coal tar processing wastewater with tributylphosphane/diethyl carbonate/cyclohexane:Extraction cycle and mechanism study, Chem. Eng. Res. Des. 157(2020) 104-113. [11] W.J. Guo, Y.C. Hou, S.H. Ren, S.D. Tian, W.Z. Wu, Formation of deep eutectic solvents by phenols and choline chloride and their physical properties, J. Chem. Eng. Data 58(2013) 866-872. [12] Y.C. Hou, J. Kong, Y.H. Ren, S.H. Ren, W.Z. Wu, Mass transfer dynamics in the separation of phenol from model oil with quaternary ammonium salts via forming deep eutectic solvents, Sep. Purif. Technol. 174(2017) 554-560. [13] T.T. Jiao, M.M. Gong, X.L. Zhuang, C.S. Li, S.J. Zhang, A new separation method for phenolic compounds from low-temperature coal tar with urea by complex formation, J. Ind. Eng. Chem. 29(2015) 344-348. [14] J. Barbieri, C. Goltz, F.B. Cavalheiro, A. Toci, L. Igarashi-Mafra, M. Mafra, Deep eutectic solvents applied in the extraction and stabilization of rosemary (Rosmarinus officinalis L.) phenolic compounds, Ind. Crop. Prod., 144(2020) 112049. [15] T.T. Jiao, X.Z. Qin, H.W. Zhang, W.R. Zhang, Y.Q. Zhang, P. Liang, Separation of phenol and pyridine from coal tar via liquid-liquid extraction using deep eutectic solvents, Chem. Eng. Res. Des. 145(2019) 112-121. [16] S.H. Ren, Y. Xiao, Y.M. Wang, J. Kong, Y.C. Hou, W.Z. Wu, Effect of water on the separation of phenol from model oil with choline chloride via forming deep eutectic solvent, Fuel Process. Technol. 137(2015) 104-108. [17] Y.A. Ji, Y.C. Hou, S.H. Ren, C.F. Yao, W.Z. Wu, Removal of the neutral oil entrained in deep eutectic solvents using an anti-extraction method, Fuel Process. Technol. 160(2017) 27-33. [18] Y.T. Dai, G.J. Witkamp, R. Verpoorte, Y.H. Choi, Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L, Anal. Chem. 85(2013) 6272-6278. [19] H. Amirfirouzkouhi, A.N. Kharat, Application of ionic liquids as recyclable green catalysts for selective alkylation of phenol, Sep. Purif. Technol. 196(2018) 132-139. [20] L. Zhang, D. Xu, J. Gao, S. Zhou, L. Zhao, Z. Zhang, Extraction and mechanism for the separation of neutral N-compounds from coal tar by ionic liquids, Fuel 194(2017) 27-35. [21] Q. Liu, X.L. Zhang, W. Li, Separation of m-cresol from aromatic hydrocarbon and alkane using ionic liquids via hydrogen bond interaction, Chin J. Chem. Eng. 27(2018) 2675-2686. [22] X. Xu, A. Li, T. Zhang, L.Z. Zhang, D.M. Xu, J. Gao, Y.L. Wang, Efficient extraction of phenol from low-temperature coal tar model oil via imidazolium-based ionic liquid and mechanism analysis, J. Mol. Liq. 306(2020) 112911. [23] B.N. Bhadra, I. Ahmed, S.H. Jhung, Remarkable adsorbent for phenol removal from fuel:Functionalized metal-organic framework, Fuel 174(2016) 43-48. [24] J.J. Gao, Y.F. Dai, W.Y. Ma, H.H. Xu, C.X. Li, Efficient separation of phenol from oil by acid-base complexing adsorption, Chem. Eng. J. 281(2015) 749-758. [25] K. Mohanty, D. Das, M.N. Biswas, Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation, Chem. Eng. J. 115(2005) 121-131. [26] Y.C. Hou, Y.H. Ren, W. Peng, S.H. Ren, W.Z. Wu, Separation of phenols from oil using imidazolium-based ionic liquids, Ind. Eng. Chem. Res. 52(2013) 18071-18075. [27] H. Meng, C.T. Ge, N.N. Ren, W.Y. Ma, Y.Z. Lu, C.X. Li, Complex extraction of phenol and cresol from model coal tar with polyols, ethanol amines, and ionic liquids thereof, Ind. Eng. Chem. Res. 53(2014) 355-362. [28] H.J. Gai, L. Qiao, C.Y. Zhong, X.W. Zhang, M. Xiao, H.B. Song, A solvent based separation method for phenolic compounds from low-temperature coal tar, J. Clean. Prod. 223(2019) 1-11. [29] W. Conway, S. Bruggink, Y. Beyad, W.L. Luo, I. Melián-Cabrera, G. Puxty, P. Feron, CO2 absorption into aqueous amine blended solutions containing monoethanolamine (MEA), N, N-dimethylethanolamine (DMEA), N, Ndiethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) for post-combustion capture processes, Chem. Eng. Sci. 126(2015) 446-454. [30] X. Luo, A. Hartono, S. Hussain, H.F. Svendsen, Mass transfer and kinetics of carbon dioxide absorption into loaded aqueous monoethanolamine solutions, Chem. Eng. Sci. 123(2015) 57-69. [31] Y. Yuan, G.T. Rochelle, CO2 absorption rate in semi-aqueous monoethanolamine, Chem. Eng. Sci. 182(2018) 56-66. [32] H. Lepaumier, D. Picq, P.L. Carrette, New amines for CO2 capture. I. Mechanisms of amine degradation in the presence of CO2, Ind. Eng. Chem. Res. 48(2009) 9061-9067. [33] H.A. Luo, Y.L. Li, Q.H. Ai, K.Y. You, S. Yan, A method of extracting phenols from coal tar or coal liquefaction oil, China Pat., 106986750(2017). [34] M. Sun, J. Chen, X.M. Dai, X.L. Zhao, K. Liu, X.X. Ma, Controlled separation of low temperature coal tar based on solvent extraction-column chromatography, Fuel Process. Technol. 136(2015) 41-49. [35] N.R. Dhumal, Electronic structure, molecular electrostatic potential and hydrogen bonding in DMSO-X complexes (X=ethanol, methanol and water), Spectrochim. Acta A. 79(3) (2011) 654-660. [36] M.K. Rofouei, E. Fereyduni, N. Sohrabi, M. Shamsipur, J.A. Gharamaleki, N. Sundaraganesan, Synthesis, X-ray crystallography characterization, vibrational spectroscopic, molecular electrostatic potential maps, thermodynamic properties studies of N, N'-di(p-thiazole) formamidine, Spectrochim. Acta A. 78(1) (2011) 88-95. [37] J. Gmehling, J.D. Li, M. Schiller, A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties, Ind. Eng. Chem. Res. 32(1993) 178-193. [38] B.L. Larsen, P. Rasmussen, A. FredensluLnd, A modified UNIFAC groupcontribution model for prediction of phase equilibria and heats of mixing, Ind. Eng. Chem. Res. 26(11) (1987) 2274-2286. |