Chinese Journal of Chemical Engineering ›› 2022, Vol. 41 ›› Issue (1): 109-120.DOI: 10.1016/j.cjche.2021.12.014
• Review • Previous Articles Next Articles
Shichao Yu1,2, Rui Liao1,2, Baojun Yang1,2, Chaojun Fang2,3, Zhentang Wang1,4, Yuling Liu1,2, Baiqiang Wu1,2, Jun Wang1,2, Guanzhou Qiu1,2
Received:
2021-06-30
Revised:
2021-12-09
Online:
2022-02-25
Published:
2022-01-28
Contact:
Jun Wang,E-mail address:wjwq2000@126.com
Supported by:
Shichao Yu1,2, Rui Liao1,2, Baojun Yang1,2, Chaojun Fang2,3, Zhentang Wang1,4, Yuling Liu1,2, Baiqiang Wu1,2, Jun Wang1,2, Guanzhou Qiu1,2
通讯作者:
Jun Wang,E-mail address:wjwq2000@126.com
基金资助:
Shichao Yu, Rui Liao, Baojun Yang, Chaojun Fang, Zhentang Wang, Yuling Liu, Baiqiang Wu, Jun Wang, Guanzhou Qiu. Chalcocite (bio)hydrometallurgy—current state, mechanism, and future directions: A review[J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 109-120.
Shichao Yu, Rui Liao, Baojun Yang, Chaojun Fang, Zhentang Wang, Yuling Liu, Baiqiang Wu, Jun Wang, Guanzhou Qiu. Chalcocite (bio)hydrometallurgy—current state, mechanism, and future directions: A review[J]. 中国化学工程学报, 2022, 41(1): 109-120.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.12.014
[1] D.A. Singer, Future copper resources, Ore Geol. Rev. 86(2017)271-279. [2] G.M. Mudd, S.M. Jowitt, Growing global copper resources, reserves and production:discovery is not the only control on supply, Econ. Geol. 113(6) (2018)1235-1267. [3] S. Northey, S. Mohr, G.M. Mudd, Z. Weng, D. Giurco, Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining, Resour. Conserv. Recycl. 83(2014)190-201. [4] J.J. Chen, Z.H. Wang, Y.F. Wu, L.Q. Li, B. Li, D.A. Pan, T.Y. Zuo, Environmental benefits of secondary copper from primary copper based on life cycle assessment in China, Resour. Conserv. Recycl. 146(2019)35-44. [5] M. Hong, S. Liu, X. Huang, B. Yang, C. Zhao, S. Yu, Y. Liu, G. Qiu, J. Wang, A review on bornite (bio) leaching, Miner. Eng. 174(2021)107245. [6] D.G. Dixon, D.D. Mayne, K.G. Baxter, GalvanoxTM-a novel galvanicallyassisted atmospheric leaching technology for copper concentrates, Can. Metall. Q. 47(3)(2008)327-336. [7] J.D. Batty, G.V. Rorke, Development and commercial demonstration of the BioCOPTM thermophile process, Hydrometallurgy 83(1-4)(2006)83-89. [8] J. Peacey, X.J. Guo, E. Robles, Copper hydrometallurgy-current status, preliminary economics, future direction and positioning versus smelting, Trans. Nonferrous Met. Soc. China 14(3)(2004)560-568. [9] D. Dreisinger, Copper leaching from primary sulfides:Options for biological and chemical extraction of copper, Hydrometallurgy 83(1-4)(2006)10-20. [10] H.R. Watling, Chalcopyrite hydrometallurgy at atmospheric pressure:1. Review of acidic sulfate, sulfate-chloride and sulfate-nitrate process options, Hydrometallurgy 140(2013)163-180. [11] J.F. Li, H.Y. Yang, L.L. Tong, W. Sand, Some aspects of industrial heap bioleaching technology:from basics to practice, Miner. Process. Extr. Metall. Rev.(2021), https://doi.org/10.1080/108829508.2021.1893720. [12] Y. Ghorbani, J.P. Franzidis, J. Petersen, Heap leaching technology-current state, innovations, and future directions:a review, Miner. Process. Extr. Metall. Rev. 37(2)(2016)73-119. [13] H.R. Watling, The bioleaching of sulphide minerals with emphasis on copper sulphides-A review, Hydrometallurgy 84(1-2)(2006)81-108. [14] C.L. Brierley, Mining Biotechnology:Research to Commercial Development and Beyond. Biomining, Springer Berlin Heidelberg, Berlin, Heidelberg (1997) 3-17. [15] X.L. Sun, B.Z. Chen, X.Y. Yang, Y.Y. Liu, Technological conditions and kinetics of leaching copper from complex copper oxide ore, J. Central South Univ. Technol. 16(6)(2009)936-941. [16] M.L. Liu, J.K. Wen, G.K. Tan, G.L. Liu, B. Wu, Experimental studies and pilot plant tests for acid leaching of low-grade copper oxide ores at the Tuwu Copper Mine, Hydrometallurgy 165(2016)227-232. [17] W.N. Mu, F.H. Cui, H.X. Xin, Y.C. Zhai, Q. Xu, A novel process for simultaneously extracting Ni and Cu from mixed oxide-sulfide coppernickel ore with highly alkaline gangue via FeCl3·6H2O chlorination and water leaching, Hydrometallurgy 191(2020)105187. [18] S. Bustos, S. Castro, R. Montealegre, The Sociedad Minera Pudahuel bacterial thin-layer leaching process at Lo Aguirre, FEMS Microbiol. Rev. 11(1-3)(1993) 231-235. [19] P. Kodali, T. Depci, N. Dhawan, X.M. Wang, C.L. Lin, J.D. Miller, Evaluation of stucco binder for agglomeration in the heap leaching of copper ore, Miner. Eng. 24(8)(2011)886-893. [20] J.D. Miller, C.L. Lin, C. Garcia, H. Arias, Ultimate recovery in heap leaching operations as established from mineral exposure analysis by X-ray microtomography, Int. J. Miner. Process. 72(1-4)(2003)331-340. [21] B.N. Schumer, R.J. Stegen, M.D. Barton, J.B. Hiskey, R.T. Downs, Mineralogical profile of supergene sulfide ore in the western copper area, morenci mine, Arizona, Can. Mineral. 57(3)(2019)391-401. [22] C. Green, J. Robertson, J.O. Marsden, Pressure leaching of copper concentrates at Morenci, Arizona-10 years of experience, Miner. Metall. Process. 35(3) (2018)109-116. [23] J.O. Marsden, J.C. Wilmot, R.J. Smith, Medium-temperature pressure leaching of copper concentrates-Part IV:Application at Morenci, Arizona, Min. Metall. Explor. 24(4)(2007)226-236. [24] H.A. Phyo, Y. Jia, Q.Y. Tan, S.G. Zhao, X.X. Liang, R.M. Ruan, X.P. Niu, Effect of particle size on chalcocite dissolution kinetics in column leaching under controlled Eh and its implications, Physicochem. Probl. Miner. Process. 56(4) (2020)676-692. [25] R.M. Ruan, G. Zou, S.P. Zhong, Z.L. Wu, B. Chan, D.Z. Wang, Why Zijinshan copper bioheapleaching plant works efficiently at low microbial activity-Study on leaching kinetics of copper sulfides and its implications, Miner. Eng. 48(2013)36-43. [26] X.Y. Song, R.R. Keays, M.F. Zhou, L. Qi, C. Ihlenfeld, J.F. Xiao, Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China, Geochim. Cosmochim. Acta 73(2)(2009)404-424. [27] Z. Fang, Q. Chen, Effect of technological factors on bacterial leaching of lowgrade Ni-Cu sulfide ore, Trans. Nonferrous Met. Soc. China. 11(2001)774-777. [28] K. Soe, R.M. Ruan, Y. Jia, Q.Y. Tan, Z.T. Wang, J.F. Shi, C.G. Zhong, H.Y. Sun, Influence of jarosite precipitation on iron balance in heap bioleaching at Monywa copper mine, J. Min. Inst. 247(2021)1-12. [29] Y. Jia, H.Y. Sun, D.F. Chen, H.S. Gao, R.M. Ruan, Characterization of microbial community in industrial bioleaching heap of copper sulfide ore at Monywa mine, Myanmar, Hydrometallurgy 164(2016)355-361. [30] A.H.G. Mitchell, W. Myint, K. Lynn, M.T. Htay, M. Oo, T. Zaw, Geology of the high sulfidation copper deposits, monywa mine, Myanmar, Resour. Geol. 61 (1)(2011)1-29. [31] C. Zhong, J. Shi, L. Zhang, H. Sun, Q. Tan, R. Sheng, Y. Jia, Study on Key Factors of Microbial Activity in S&K Mine in Myanmar, Non-Ferrous Met. Metall. 2 (2019)6-9.(in Chinese) [32] P.E. Soto, P.A. Galleguillos, M.A. Serón, V.J. Zepeda, C.S. Demergasso, C. Pinilla, Parameters influencing the microbial oxidation activity in the industrial bioleaching heap at Escondida mine, Chile, Hydrometallurgy 133(2013)51-57. [33] C. Demergasso, R. Véliz, P. Galleguillos, S. Marín, M. Acosta, V. Zepeda, J. Zeballos, F. Henríquez, R. Pizarro, J. Bekios-Calfa, Decision support system for bioleaching processes, Hydrometallurgy 181(2018)113-122. [34] A.H. Kaksonen, N.J. Boxall, Y. Gumulya, H.N. Khaleque, C. Morris, T. Bohu, K.Y. Cheng, K.M. Usher, A.M. Lakaniemi, Recent progress in biohydrometallurgy and microbial characterisation, Hydrometallurgy 180(2018)7-25. [35] C.L. Brierley, How will biomining be applied in future?, Trans Nonferrous Met. Soc. China 18(6)(2008)1302-1310. [36] J.K. Wen, B.W. Chen, H. Shang, G.C. Zhang, Research progress in biohydrometallurgy of rare metals and heavy nonferrous metals with an emphasis on China, Rare Met. 35(6)(2016)433-442. [37] N. Marchevsky, M.M. Barroso Quiroga, A. Giaveno, E. Donati, Microbial oxidation of refractory gold sulfide concentrate by a native consortium, Trans. Nonferrous Met. Soc. China 27(5)(2017)1143-1149. [38] R. Oyarzun, J. Oyarzún, J. Lillo, H. Maturana, P. Higueras, Mineral deposits and Cu-Zn-As dispersion-contamination in stream sediments from the semiarid Coquimbo Region, Chile, Environ. Geol. 53(2)(2007)283-294. [39] M. Maley, W. van Bronswijk, H.R. Watling, Leaching of a low-grade, copper-nickel sulfide ore:2. Impact of aeration and pH on Cu recovery during abiotic leaching, Hydrometallurgy 98(2009)66-72. [40] X.J. Wang, L.Y. Ma, J.J. Wu, Y.H. Xiao, J.M. Tao, X.D. Liu, Effective bioleaching of low-grade copper ores:Insights from microbial cross experiments, Bioresour. Technol. 308(2020)123273. [41] J.W. Mao, J.D. Zhang, F. Pirajno, D. Ishiyama, H.M. Su, C.L. Guo, Y.C. Chen, Porphyry Cu-Au-Mo-epithermal Ag-Pb-Zn-distal hydrothermal Au deposits in the Dexing area, Jiangxi Province, East China-A linked ore system, Ore Geol. Rev. 43(1)(2011)203-216. [42] G. Velarde, Agglomeration control for heap leaching processes, Miner. Process. Extr. Metall. Rev. 26(3-4)(2005)219-231. [43] L. Y, Study on the test of enhanced agitation leaching of Muliashi low-grade complex copper oxide ore, Non-Ferrous Min. Metall. 34(4)(2018)32-37(in Chinese). [44] P. M., W. L., The new leaching process of muliashi copper oxide Ore, NonFerrous Min. Metall. 31(03)(2015)30-32(in Chinese). [45] L. Y., Application of novel technology in Zambia Luanshya Muliashi copper hydrometallurgical plant, Non-Ferrous Met. Eng. 5(1)(2015)36-40(in Chinese). [46] J. Wang, H. Zhao, W. Qin, X. Liu, G. Qiu, Industrial practice of biohydrometallurgy in Zambia, in:N.R. Neelameggham,S. Alam, H. Oosterhof, A. Jha, D. Dreisinger, S. Wang (Eds.), TMS Annu. Meet., Springer, Cham (2015)3-10. [47] E. Munnik, H. Singh, T. Uys, M. Bellino, J. Du Plessis, K. Fraser, G.B. Harris, Development and implementation of a novel pressure leach process for the recovery of cobalt and copper at Chambishi, Zambia, J. South African Inst. Min. Metall. 103(2003)1-9. [48] S.E. Keeling, M.L. Palmer, F.C. Caracatsanis, J.A. Johnson, H.R. Watling, Leaching of chalcopyrite and sphalerite using bacteria enriched from a spent chalcocite heap, Miner. Eng. 18(13-14)(2005)1289-1296. [49] S.H. Yin, L.M. Wang, E. Kabwe, X. Chen, R.F. Yan, K. An, L. Zhang, A.X. Wu, Copper bioleaching in China:review and prospect, Minerals 8(2)(2018)32. [50] M.R. Shayestehfar, S.K. Nasab, H. Mohammadalizadeh, Mineralogy, petrology, and chemistry studies to evaluate oxide copper ores for heap leaching in Sarcheshmeh copper mine, Kerman, Iran, J. Hazard. Mater. 154(1-3)(2008) 602-612. [51] S.H. Yin, L.M. Wang, A.X. Wu, M.L. Free, E. Kabwe, Enhancement of copper recovery by acid leaching of high-mud copper oxides:a case study at Yangla Copper Mine, China, J. Clean. Prod. 202(2018)321-331. [52] S. Panda, A. Akcil, N. Pradhan, H. Deveci, Current scenario of chalcopyrite bioleaching:a review on the recent advances to its heap-leach technology, Bioresour. Technol. 196(2015)694-706. [53] I. Yang, S. Choi, J. Park, Passivation of chalcopyrite in hydrodynamicbioleaching, Episodes 41(4)(2018)249-258. [54] C.L. Brierley, Biohydrometallurgical prospects, Hydrometallurgy 104(3-4) (2010)324-328. [55] C. Demergasso, Microbial succession during a heap bioleaching cycle of low grade copper sulphides. does this knowledge mean a real input for industrial process design and control?, Adv Mater. Res. 71-73(2009)21-27. [56] D.E. Rawlings, D.B. Johnson, The microbiology of biomining:development and optimization of mineral-oxidizing microbial consortia, Microbiology (Reading) 153(Pt 2)(2007)315-324. [57] J.A. Brierley, C.L. Brierley, Present and future commercial applications of biohydrometallurgy, Hydrometallurgy 59(2-3)(2001)233-239. [58] R.M. Ruan, X.Y. Liu, G. Zou, J.H. Chen, J.K. Wen, D.Z. Wang, Industrial practice of a distinct bioleaching system operated at low pH, high ferric concentration, elevated temperature and low redox potential for secondary copper sulfide, Hydrometallurgy 108(1-2)(2011)130-135. [59] R.M. Ruan, J.K. Wen, J.H. Chen, Bacterial heap-leaching:Practice in Zijinshan copper mine, Hydrometallurgy 83(1-4)(2006)77-82. [60] X.Y. Liu, R.B. Shu, B.W. Chen, B. Wu, J.K. Wen, Bacterial community structure change during pyrite bioleaching process:Effect of pH and aeration, Hydrometallurgy 95(3-4)(2009)267-272. [61] B. Wu, J.K. Wen, B.W. Chen, G.C. Yao, D.Z. Wang, Control of redox potential by oxygen limitation in selective bioleaching of chalcocite and pyrite, Rare Met. 33(5)(2014)622-627. [62] B. Wu, X.L. Yang, L.L. Cai, G.C. Yao, J.K. Wen, D.Z. Wang, The influence of pyrite on galvanic assisted leaching of chalcocite concentrates, Adv. Mater. Res. 825 (2013)459-463. [63] B. Wu, X.L. Yang, J.K. Wen, D.Z. Wang, Semiconductor-microbial mechanism of selective dissolution of chalcocite in bioleaching, ACS Omega 4(19)(2019) 18279-18288. [64] J. Wang, X.W. Gan, H.B. Zhao, M.H. Hu, K.Y. Li, W.Q. Qin, G.Z. Qiu, Dissolution and passivation mechanisms of chalcopyrite during bioleaching:DFT calculation, XPS and electrochemistry analysis, Miner. Eng. 98(2016)264-278. [65] X.X. Wang, R. Liao, H.B. Zhao, M.X. Hong, X.T. Huang, H. Peng, W. Wen, W.Q. Qin, G.Z. Qiu, C.M. Huang, J. Wang, Synergetic effect of pyrite on strengthening bornite bioleaching by Leptospirillum ferriphilum, Hydrometallurgy 176(2018)9-16. [66] B.J. Yang, M. Lin, J.H. Fang, R.Y. Zhang, W. Luo, X.X. Wang, R. Liao, B.Q. Wu, J. Wang, M. Gan, B. Liu, Y. Zhang, X.D. Liu, W.Q. Qin, G.Z. Qiu, Combined effects of jarosite and visible light on chalcopyrite dissolution mediated by Acidithiobacillus ferrooxidans, Sci. Total Environ. 698(2020)134175. [67] M.J. Buerger, N.W. Buerger, Low-chalcocite and high-chalcocite, Am. Mineral. 29(1944)55-65. [68] H.T. Evans, Copper coordination in low chalcocite and djurleite and other copper-rich sulfides, Am. Mineral. 66(1981)807-818. [69] M.J. Buerger, B.J. Wuensch, Distribution of atoms in high chalcocite, Cu2S, Science 141(3577)(1963)276-277. [70] H.T. Evans Jr., Djurleite (Cu1.94S) and low chalcocite (Cu2S):new crystal structure studies, Science 203(4378)(1979)356-358. [71] H.T. Evans, Crystal structure of low chalcocite, Nat. Phys. Sci. 232(29)(1971) 69-70. [72] K. Fu, F. Dong, Y. Ning, J. Wang, Bioleaching of cpper slphides and teir Crystal sucture, Acta Mineral. Sin. 36(2016)215-219.(in Chinese) [73] F.K. Crundwell, The influence of the electronic structure of solids on the anodic dissolution and leaching of semiconducting sulphide minerals, Hydrometallurgy 21(2)(1988)155-190. [74] D. Lu, K. Jiang, C. Wang, D. Liu, Leaching mechanism of chalcocite and covellite, Nonferrous Met. Eng. 1(2002)31-35.(in Chinese) [75] G.M. O'Connor, J.J. Eksteen, A critical review of the passivation and semiconductor mechanisms of chalcopyrite leaching, Miner. Eng. 154(2020) 106401. [76] K. Osseo-Asare, Semiconductor electrochemistry and hydrometallurgical dissolution processes, Hydrometallurgy 29(1-3)(1992)61-90. [77] G. Deroubaix, P. Marcus, X-ray photoelectron spectroscopy analysis of copper and zinc oxides and sulphides, Surf. Interface Anal. 18(1)(1992)39-46. [78] I. Nakai, Y. Sugitani, K. Nagashima, Y. Niwa, X-ray photoelectron spectroscopic study of copper minerals, J. Inorg. Nucl. Chem. 40(1978)789-791. [79] Y. Li, N. Kawashima, J. Li, A.P. Chandra, A.R. Gerson, A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite, Adv. Colloid Interface Sci. 197-198(2013)1-32. [80] M.J. Nicol, C.R.S. Needes, N.P. Finkelstein, Electrochemical model for the leaching of uranium dioxide-1 Acid media, Leaching Reduct in Hydrometall 2 (1975)1-11. [81] M.J. Nicol, The use of impedance measurements in the electrochemistry of the dissolution of sulfide minerals, Hydrometallurgy 169(2017)99-102. [82] S.A. Bolorunduro, Kinetics of Leaching of Chalcocite in Acid Ferric Sulfate Media:Chemical and Bacterial Leaching, Ph. D. Thesis, University of British Columbia, Canada, 1999. [83] M. Hashemzadeh, D.G. Dixon, W.Y. Liu, Modelling the kinetics of chalcocite leaching in acidified cupric chloride media under fully controlled pH and potential, Hydrometallurgy 189(2019)105114. [84] J.D. Sullivan, Chemical and physical features of copper leaching, Am. Inst. Mining Metall. Eng.-Trans.-Copper Metall. 106(1933)515-546. [85] A. Grizo, N. Pacović, F. Poposka, Ž. Koneska, Leaching of a low-grade chalcocite-covellite ore containing iron in sulphuric acid:The influence of pH and particle size on the kinetics of copper leaching, Hydrometallurgy 8(1) (1982)5-16. [86] R.M. Ruan, E. Zhou, X.Y. Liu, B. Wu, G.Y. Zhou, J.K. Wen, Comparison on the leaching kinetics of chalcocite and pyrite with or without bacteria, Rare Met. 29(6)(2010)552-556. [87] H. Naderi, M. Abdollahy, N. Mostoufi, M.J. Koleini, S.A. Shojaosadati, Z. Manafi, Kinetics of chemical leaching of chalcopyrite from low grade copper ore: behavior of different size fractions, Int. J. Miner. Metall. Mater. 18(6)(2011) 638-645. [88] J.E. Dutrizac, R.J.C. MacDonald, The kinetics of dissolution of covellite in acidified ferric sulphate solutions, Can. Metall. Q. 13(3)(1974)423-433. [89] G. Thomas, T.R. Ingraham, R.J.C. MacDonald, Kinetics of dissolution of synthetic digenite and chalcocite in aqueous acidic ferric sulphate solutions, Can. Metall. Q. 6(3)(1967)281-292. [90] X.P. Niu, R.M. Ruan, Q.Y. Tan, Y. Jia, H.Y. Sun, Study on the second stage of chalcocite leaching in column with redox potential control and its implications, Hydrometallurgy 155(2015)141-152. [91] Z.Y. Lu, M.I. Jeffrey, F. Lawson, An electrochemical study of the effect of chloride ions on the dissolution of chalcopyrite in acidic solutions, Hydrometallurgy 56(2)(2000)145-155. [92] Z.Y. Lu, M.I. Jeffrey, F. Lawson, The effect of chloride ions on the dissolution of chalcopyrite in acidic solutions, Hydrometallurgy 56(2)(2000)189-202. [93] W.W. Fisher, Comparison of chalcocite dissolution in the sulfate, perchlorate, nitrate, chloride, ammonia, and cyanide systems, Miner. Eng. 7(1)(1994)99-103. [94] W.W. Fisher, F.A. Flores, J.A. Henderson, Comparison of chalcocite dissolution in the oxygenated, aqueous sulfate and chloride systems, Miner. Eng. 5(7) (1992)817-834. [95] R.J. Roman, B.R. Benner, Dissolution of copper concentrates, Min. Sci Eng. 5 (1973)3-24. [96] C.Y. Cheng, F. Lawson, The kinetics of leaching chalcocite in acidic oxygenated sulphate-chloride solutions, Hydrometallurgy 27(3)(1991)249-268. [97] C.Y. Cheng, F. Lawson, The kinetics of leaching covellite in acidic oxygenated sulphate-chloride solutions, Hydrometallurgy 27(3)(1991)269-284. [98] T. Hirato, M. Kinoshita, Y. Awakura, H. Majima, The leaching of chalcopyrite with ferric chloride, Metall. Trans. B 17(1)(1986)19-28. [99] A.J. Parker, R.L. Paul, G.P. Power, Electrochemical aspects of leaching copper from chalcopyrite in ferric and cupric salt solutions, Aust. J. Chem. 34(1) (1981)13. [100] M.S. Lee, M.J. Nicol, P. Basson, Cathodic processes in the leaching and electrochemistry of covellite in mixed sulfate-chloride media, J. Appl. Electrochem. 38(3)(2008)363-369. [101] D. Torres, E. Trigueros, P. Robles, W.H. Leiva, R.I. Jeldres, P.G. Toledo, N. Toro, Leaching of pure chalcocite with reject brine and MnO2 from manganese nodules, Metals 10(11)(2020)1426. [102] H. Miki, M. Nicol, L. Velásquez-Yévenes, The kinetics of dissolution of synthetic covellite, chalcocite and digenite in dilute chloride solutions at ambient temperatures, Hydrometallurgy 105(3-4)(2011)321-327. [103] M. Hashemzadeh, W.Y. Liu, The response of sulfr chemical state to different leaching conditions in chloride leaching of chalcocite, Hydrometallurgy 192 (2020)105245. [104] G. Senanayake, A review of chloride assisted copper sulfide leaching by oxygenated sulfuric acid and mechanistic considerations, Hydrometallurgy 98 (1-2)(2009)21-32. [105] E.M. Arce, I. González, A comparative study of electrochemical behavior of chalcopyrite, chalcocite and bornite in sulfuric acid solution, Int. J. Miner. Process. 67(1-4)(2002)17-28. [106] B. Liao, J. Wen, B. Wu, H. Shang, B. Chen, Electrochemistry of oxidation of chalcocite in the presence and absence of microorganisms, Chin. J. Eng. 40 (2018)1495-1501.(in Chinese) [107] A.E. Elsherief, A. Saba, S.E. Afifi, Anodic leaching of chalcocite with periodic cathodic reduction, Miner. Eng. 8(9)(1995)967-978. [108] H. Tributsch, J.A. Rojas-Chapana, Metal sulfide semiconductor electrochemical mechanisms induced by bacterial activity, Electrochim. Acta 45(28)(2000)4705-4716. [109] S. Nagpal, D. Dahlstrom, T. Oolman, A mathematical model for the bacterial oxidation of a sulfide ore concentrate, Biotechnol. Bioeng. 43(1994)357-364. [110] H. Brandl, Microbial Leaching of Metals, in:H.J. Rehm, G. Reed (Eds.), Biotechnology, second ed., WILEY-VCH, New Jersey (2001)191-224. [111] X.Y. Liu, B. Wu, B.W. Chen, J.K. Wen, R.M. Ruan, G.C. Yao, D.Z. Wang, Bioleaching of chalcocite started at different pH:Response of the microbial community to environmental stress and leaching kinetics, Hydrometallurgy 103(1-4)(2010)1-6. [112] H. Liu, X.C. Lu, L.J. Zhang, W.L. Xiang, X.Y. Zhu, J. Li, X.L. Wang, J.J. Lu, R.C. Wang, Collaborative effects of Acidithiobacillus ferrooxidans and ferrous ions on the oxidation of chalcopyrite, Chem. Geol. 493(2018)109-120. [113] P.D. Franzmann, C.M. Haddad, R.B. Hawkes, W.J. Robertson, J.J. Plumb, Effects of temperature on the rates of iron and sulfur oxidation by selected bioleaching Bacteria and Archaea:Application of the Ratkowsky equation, Miner. Eng. 18(13-14)(2005)1304-1314. [114] J.J. Plumb, R. Muddle, P.D. Franzmann, Effect of pH on rates of iron and sulfur oxidation by bioleaching organisms, Miner. Eng. 21(1)(2008)76-82. [115] G. Zou, S. Papirio, X.K. Lai, Z.L. Wu, L.C. Zou, J.A. Puhakka, R.M. Ruan, Column leaching of low-grade sulfide ore from Zijinshan copper mine, Int. J. Miner. Process. 139(2015)11-16. [116] H. Sakaguchi, A.E. Torma, M. Silver, Microbiological oxidation of synthetic chalcocite and covellite by Thiobacillus ferrooxidans, Appl. Environ. Microbiol. 31(1)(1976)7-10. [117] H.N. Cheng, Y.H. Hu, Bioleaching of anilite using pure and mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus caldus, Miner. Eng. 20 (12)(2007)1187-1190. [118] H. Cheng, Y. Hu, Bioleaching and Mechanism of Anilite, Covellite and Chalcopyrite, Ph. D. Thesis, Central South University, Changsha, 2010. [119] M.C. Ruiz, S. Honores, R. Padilla, Leaching kinetics of digenite concentrate in oxygenated chloride media at ambient pressure, Metall. Mater. Trans. B 29(5) (1998)961-969. [120] C. Fang, S. Yu, X. Wang, H. Zhao, W. Qin, G. Qiu, J. Wang, Synchrotron radiation XRD investigation of the fine phase transformation during synthetic chalcocite acidic ferric sulfate leaching, Minerals 8(2018)461. [121] W. Mulak, J. Niemiec, Kinetics of Cu2S dissolution in acidic solution of ferric sulphate, Rocz. Chem., 43(1969)1387-1394. [122] J. Petersen, D.G. Dixon, Principles, mechanisms and dynamics of chalcocite heap bioleaching, Hydrometallurgy 1(2003)351-364. [123] P.J. Marcantonio, Chalcocite dissolution in acidic ferric-sulfate solutions, The University of Utah, the United States, 1976. [124] J. Lee, S. Kim, B. Kim, J.C. Lee, Effect of mechanical activation on the kinetics of copper leaching from copper sulfide (CuS), Metals 8(3)(2018)150. [125] A. Aracena, C. Espinoza, O. Jerez, D. Carvajal, A. Jaques, Dissolution kinetics of secondary covellite resulted from digenite dissolution in ferric/acid/chloride media, Physicochem. Probl. Miner. Process. 55(2019)840-851. [126] T. Vargas, C.S. Davis-Belmar, C. Cárcamo, Biological and chemical control in copper bioleaching processes:When inoculation would be of any benefit?, Hydrometallurgy 150(2014)290-298 [127] S.C. Yu, B.J. Yang, C.J. Fang, Y.S. Zhang, S.T. Liu, Y.S. Zhang, L. Shen, J.P. Xie, J. Wang, Dissolution mechanism of the oxidation process of covellite by ferric and ferrous ions, Hydrometallurgy 201(2021)105585. [128] E.M. Córdoba, J.A. Muñoz, M.L. Blázquez, F. González, A. Ballester, Leaching of chalcopyrite with ferric ion Part II:Effect of redox potential, Hydrometallurgy 93(3-4)(2008)88-96. [129] J. Petersen, D.G. Dixon, Principles, Mechanisms and Dynamics of Chalcocite Heap Bioleaching, in:E.R. Donati, W. Sand (Eds.), Microbial Processing of Metal Sulfides, Springer, Dordrecht, 2007, pp. 193-218. [130] M.J. Leahy, M.R. Davidson, M.P. Schwarz, A model for heap bioleaching of chalcocite with heat balance:Mesophiles and moderate thermophiles, Hydrometallurgy 85(1)(2007)24-41. [131] N. Ogbonna, J. Petersen, H.J. Laurie, Metallurgy, An agglomerate scale model for the heap bioleaching of chalcocite,, J. Sounth Africa Inst. Mining Metall. 106 (2006)433-442. [132] H. Li, D. Cang, G. Qiu, A. Wu, Kinetics of secondary copper sulfide heap bioleaching concerning potential and heap constitution, J. Cent. South Univ. 37 (6)(2006)1087-1093(in Chinese). [133] T.T. Zhu, X.C. Lu, H. Liu, J. Li, X.Y. Zhu, J.J. Lu, R.C. Wang, Quantitative X-ray photoelectron spectroscopy-based depth profiling of bioleached arsenopyrite surface by Acidithiobacillus ferrooxidans, Geochim. Cosmochim. Acta 127 (2014)120-139. [134] S. Deng, G.H. Gu, B.K. Xu, L.J. Li, B.C. Wu, Surface characterization of arsenopyrite during chemical and biological oxidation, Sci. Total Environ. 626 (2018)349-356. [135] Y.L. Ma, H.C. Liu, J.L. Xia, Z.Y. Nie, H.R. Zhu, Y.D. Zhao, C.Y. Ma, L. Zheng, C.H. Hong, W. Wen, Relatedness between catalytic effect of activated carbon and passivation phenomenon during chalcopyrite bioleaching by mixed thermophilic Archaea culture at 65℃, Trans. Nonferrous Met. Soc. China 27 (6)(2017)1374-1384. [136] Y. Yang, W.H. Liu, M. Chen, XANES and XRD study of the effect of ferrous and ferric ions on chalcopyrite bioleaching at 30℃ and 48℃, Miner. Eng. 70 (2015)99-108. [137] M. Kartal, F. Xia, D. Ralph, W.D.A. Rickard, F. Renard, W. Li, Enhancing chalcopyrite leaching by tetrachloroethylene-assisted removal of sulphur passivation and the mechanism of jarosite formation, Hydrometallurgy 191 (2020)105192. [138] W. Zhu, J.L. Xia, Y. Yang, Z.Y. Nie, L. Zheng, C.Y. Ma, R.Y. Zhang, A. Peng, L. Tang, G.Z. Qiu, Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite, Bioresour. Technol. 102 (4)(2011)3877-3882. [139] M. Khoshkhoo, M. Dopson, A. Shchukarev, Å. Sandström, Chalcopyrite leaching and bioleaching:an X-ray photoelectron spectroscopic (XPS) investigation on the nature of hindered dissolution, Hydrometallurgy 149 (2014)220-227. [140] Y.J. Tang, Y.Y. Xie, G.N. Lu, H. Ye, Z. Dang, Z.N. Wen, X.Q. Tao, C.S. Xie, X.Y. Yi, Arsenic behavior during Gallic acid-induced redox transformation of jarosite under acidic conditions, Chemosphere 255(2020)126938. [141] J.F. Banfield, S.A. Welch, H. Zhang, T.T. Ebert, R.L. Penn, Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products, Science 289(5480)(2000)751-754. [142] C.B. Tabelin, R.D. Corpuz, T. Igarashi, M. Villacorte-Tabelin, R.D. Alorro, K. Yoo, S. Raval, M. Ito, N. Hiroyoshi, Acid mine drainage formation and arsenic mobility under strongly acidic conditions:Importance of soluble phases, iron oxyhydroxides/oxides and nature of oxidation layer on pyrite, J. Hazard. Mater. 399(2020)122844. [143] L. Cao, B. Chen, X. Gou, Q. Zhou, A comparative study on microtopography of jarosite formed in different conditions, Geol. J. China Univ. 25(2019)333-340 (in Chinese). [144] S.S. Feng, Y.J. Yin, Z.W. Yin, H.L. Zhang, D.Q. Zhu, Y.J. Tong, H.L. Yang, Simultaneously enhance iron/sulfur metabolism in column bioleaching of chalcocite by pyrite and sulfur oxidizers based on joint utilization of waste resource, Environ. Res. 194(2021)110702. [145] G.J. Qian, R. Fan, J.Y. Huang, A. Pring, S.L. Harmer, H. Zhang, M.A.D. Rea, J. Brugger, P.R. Teasdale, C.T. Gibson, R.C. Schumann, R.S.C. Smart, A.R. Gerson, Oxidative dissolution of sulfide minerals in single and mixed sulfide systems under simulated acid and metalliferous drainage conditions, Environ. Sci. Technol. 55(4)(2021)2369-2380. [146] G.H. Gu, X.J. Sun, K.T. Hu, J.H. Li, G.Z. Qiu, Electrochemical oxidation behavior of pyrite bioleaching by Acidthiobacillus ferrooxidans, Trans. Nonferrous Met. Soc. China 22(5)(2012)1250-1254. [147] T. Cabral, I. Ignatiadis, Mechanistic study of the pyrite-solution interface during the oxidative bacterial dissolution of pyrite (FeS2) by using electrochemical techniques, Int. J. Miner. Process. 62(1-4)(2001)41-64. [148] Y.S. Zhang, H.B. Zhao, L. Qian, M.L. Sun, X. Lv, L.Y. Zhang, J. Petersen, G.Z. Qiu, A brief overview on the dissolution mechanisms of sulfide minerals in acidic sulfate environments at low temperatures:emphasis on electrochemical cyclic voltammetry analysis, Miner. Eng. 158(2020)106586. [149] P.R. Holmes, F.K. Crundwell, The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen:an electrochemical study, Geochim. Cosmochim. Acta 64(2)(2000)263-274. |
[1] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 228-234. |
[2] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[3] | Junyang Liu, Luming Wang, Yuhang Bian, Chunshan Li, Zengxi Li, Jie Li. Liquid-phase esterification of methacrylic acid with methanol catalyzed by cation-exchange resin in a fixed bed reactor: Experimental and kinetic studies [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 1-10. |
[4] | Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 53-68. |
[5] | Bing Liu, Yingjiao Li, Moses Arowo, Guangwen Chu, Yong Luo, Liangliang Zhang, Haikui Zou, Baochang Sun. Sulfonation of 1, 4-diaminoanthraquinone leuco by chlorosulfonic acid: Kinetics and process intensification [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 163-169. |
[6] | Xinyu Liu, Hongliang Sheng, Song He, Chunhua Du, Yuansheng Ma, Chichi Ruan, Chunxiang He, Huaming Dai, Yajun Huang, Yuelei Pan. Insight into pyrolysis of hydrophobic silica aerogels: Kinetics, reaction mechanism and effect on the aerogels [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 266-281. |
[7] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 10-16. |
[8] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 25-32. |
[9] | Zhiwei Wang, Yu Zhang, Zhi Zhang, Daowei Zhou, Zhikai Cao, Yong Sha. Investigation on catalytic distillation for ethyl acetate production with different catalytic packing structures [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 63-72. |
[10] | Tengjie Wang, Wenkai Li, Xuehui Ge, Ting Qiu, Xiaoda Wang. Kinetics measurement of ethylene-carbonate synthesis via a fast transesterification by microreactors [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 243-250. |
[11] | Yingjie Song, Shuqi Zhong, Yingjiao Li, Kun Dong, Yong Luo, Guangwen Chu, Haikui Zou, Baochang Sun. Study on the catalytic degradation of sodium lignosulfonate to aromatic aldehydes over nano-CuO: Process optimization and reaction kinetics [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 300-309. |
[12] | Xuan Gao, Zhihui Li, Dongsheng Zhang, Xinqiang Zhao, Yanji Wang. Synthesis and kinetics of 2,5-dicyanofuran in the presence of hydroxylamine ionic liquid salts [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 310-316. |
[13] | Kechang Gao, Shengjuan Shao, Zhixing Li, Jiaxin Jing, Weizhou Jiao, Youzhi Liu. Kinetics of the direct reaction between ozone and phenol by high-gravity intensified heterogeneous catalytic ozonation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 317-323. |
[14] | Hongbo Song, Wei Wang, Jiachen Sun, Xianhui Wang, Xianhua Zhang, Sai Chen, Chunlei Pei, Zhi-Jian Zhao. Chemical looping oxidative propane dehydrogenation controlled by oxygen bulk diffusion over FeVO4 oxygen carrier pellets [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 409-420. |
[15] | Kai Zhang, Fangming Xue, Zhiqiang Wang, Xingxing Cheng. Research on prediction model of formation temperature of ammonium bisulfate in air preheater of coal-fired power plant [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 202-210. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||