Chinese Journal of Chemical Engineering ›› 2022, Vol. 43 ›› Issue (3): 124-134.DOI: 10.1016/j.cjche.2022.01.005
Previous Articles Next Articles
Di Gao1, Yibo Zhi1, Liyuan Cao1, Liang Zhao1, Jinsen Gao1, Chunming Xu1, Mingzhi Ma2, Pengfei Hao2
Received:
2021-09-10
Revised:
2021-12-24
Online:
2022-04-28
Published:
2022-03-28
Contact:
Liang Zhao,E-mail:liangzhao@cup.edu.cn
Supported by:
Di Gao1, Yibo Zhi1, Liyuan Cao1, Liang Zhao1, Jinsen Gao1, Chunming Xu1, Mingzhi Ma2, Pengfei Hao2
通讯作者:
Liang Zhao,E-mail:liangzhao@cup.edu.cn
基金资助:
Di Gao, Yibo Zhi, Liyuan Cao, Liang Zhao, Jinsen Gao, Chunming Xu, Mingzhi Ma, Pengfei Hao. Influence of zinc state on the catalyst properties of Zn/HZSM-5 zeolite in 1-hexene aromatization and cyclohexane dehydrogenation[J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 124-134.
Di Gao, Yibo Zhi, Liyuan Cao, Liang Zhao, Jinsen Gao, Chunming Xu, Mingzhi Ma, Pengfei Hao. Influence of zinc state on the catalyst properties of Zn/HZSM-5 zeolite in 1-hexene aromatization and cyclohexane dehydrogenation[J]. 中国化学工程学报, 2022, 43(3): 124-134.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.01.005
[1] F. Mohammadparast, R. Halladj, S. Askari, The crystal size effect of nano-sized ZSM-5 in the catalytic performance of petrochemical processes:a review, Chem. Eng. Commun. 202 (4) (2015) 542-556.http://dx.doi.org/10.1080/00986445.2014.952815 [2] S.M. Alipour, Recent advances in naphtha catalytic cracking by nano ZSM-5:a review, Chin. J. Catal. 37 (5) (2016) 671-680.http://dx.doi.org/10.1016/S1872-2067(15)61091-9 [3] M.Y. Gim, C. Song, T.H. Kim, J.H. Song, D.H. Kim, K.Y. Lee, I.K. Song, BTX production by coaromatization of methane and propane over gallium oxide supported on mesoporous HZSM-5, Mol. Catal. 439 (2017) 134-142.http://dx.doi.org/10.1016/j.mcat.2017.07.001 [4] X.W. Xu, E.C. Jiang, Z.Y. Li, Y. Sun, BTX from anisole by hydrodeoxygenation and transalkylation at ambient pressure with zeolite catalysts, Fuel 221 (2018) 440-446.http://dx.doi.org/10.1016/j.fuel.2018.01.033 [5] L. Han, O.Y. Ying, E.H. Xing, Y.B. Luo, Z.J. Da, Enhancing hydrothermal stability of framework Al in ZSM-5:from the view on the transformation between P and Al species by solid-state NMR spectroscopy, Chin. J. Chem. Eng. 28 (12) (2020) 3052-3060.http://dx.doi.org/10.1016/j.cjche.2020.07.039 [6] S.A. Tabak, F.J. Krambeck, W.E. Garwood, Conversion of propylene and butylene over ZSM-5 catalyst, AIChE J. 32 (9) (1986) 1526-1531.https://doi.org/10.1002/aic.690320913 [7] M. Bjørgen, S. Svelle, F. Joensen, J. Nerlov, S. Kolboe, F. Bonino, L. Palumbo, S. Bordiga, U. Olsbye, Conversion of methanol to hydrocarbons over zeolite H-ZSM-5:on the origin of the olefinic species, J. Catal. 249 (2) (2007) 195-207.http://dx.doi.org/10.1016/j.jcat.2007.04.006 [8] U. Olsbye, S. Svelle, M. Bjørgen, P. Beato, T.V.W. Janssens, F. Joensen, S. Bordiga, K.P. Lillerud, Conversion of methanol to hydrocarbons:how zeolite cavity and pore size controls product selectivity, Angew. Chem. Int. Ed. 51 (24) (2012) 5810-5831.https://doi.org/10.1002/anie.201103657 [9] S. Ilias, A. Bhan, Mechanism of the catalytic conversion of methanol to hydrocarbons, ACS Catal. 3 (1) (2013) 18-31.https://doi.org/10.1021/cs3006583 [10] Y.Q. Song, X.X. Zhu, S.J. Xie, Q.X. Wang, L.Y. Xu, The effect of acidity on olefin aromatization over potassium modified ZSM-5 catalysts, Catal. Lett. 97 (1/2) (2004) 31-36.https://doi.org/10.1023/b:catl.0000034281.58853.76 [11] D.B. Lukyanov, N.S. Gnep, M.R. Guisnet, Kinetic modeling of ethene and propene aromatization over HZSM-5 and GaHZSM-5, Ind. Eng. Chem. Res. 33 (2) (1994) 223-234.http://dx.doi.org/10.1021/ie00026a008 [12] Z.N. Lashchinskaya, A.A. Gabrienko, S.S. Arzumanov, A.A. Kolganov, A.V. Toktarev, D. Freude, J. Haase, A.G. Stepanov, Which species, Zn2+ cations or ZnO clusters, are more efficient for olefin aromatization? 13C solid-state NMR investigation of n-but-1-ene transformation on Zn-modified zeolite, ACS Catal. 10 (23) (2020) 14224-14233.https://doi.org/10.1021/acscatal.0c03647 [13] P. He, J.S. Jarvis, S.J. Meng, Q.Y. Li, G.M. Bernard, L.J. Liu, X.H. Mao, Z. Jiang, H.B. Zeng, V.K. Michaelis, H. Song, Co-aromatization of methane with propane over Zn/HZSM-5:the methane reaction pathway and the effect of Zn distribution, Appl. Catal. B Environ. 250 (2019) 99-111.http://dx.doi.org/10.1016/j.apcatb.2019.03.011 [14] M. Raad, A. Astafan, S. Hamieh, J. Toufaily, T. Hamieh, J.D. Comparot, C. Canaff, T.J. Daou, J. Patarin, L. Pinard, Catalytic properties of Ga-containing MFI-type zeolite in cyclohexane dehydrogenation and propane aromatization, J. Catal. 365 (2018) 376-390.http://dx.doi.org/10.1016/j.jcat.2018.06.029 [15] J.H. Gao, K.M. Ji, H. Zhou, J.Y. Xun, Z.H. Liu, K. Zhang, P. Liu, Synthesis and characterization of BZSM-5 and its catalytic performance in the methanol to hydrocarbons reaction, Chin. J. Chem. Eng. 35 (2021) 196-203.http://dx.doi.org/10.1016/j.cjche.2020.09.008 [16] I. Pinilla-Herrero, E. Borfecchia, J. Holzinger, U.V. Mentzel, F. Joensen, K.A. Lomachenko, S. Bordiga, C. Lamberti, G. Berlier, U. Olsbye, S. Svelle, J. Skibsted, P. Beato, High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics, J. Catal. 362 (2018) 146-163.http://dx.doi.org/10.1016/j.jcat.2018.03.032 [17] X.J. Niu, J. Gao, Q. Miao, M. Dong, G.F. Wang, W.B. Fan, Z.F. Qin, J.G. Wang, Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics, Microporous Mesoporous Mater. 197 (2014) 252-261.http://dx.doi.org/10.1016/j.micromeso.2014.06.027 [18] S. Triwahyono, A.A. Jalil, R.R. Mukti, M. Musthofa, N.A.M. Razali, M.A.A. Aziz, Hydrogen spillover behavior of Zn/HZSM-5 showing catalytically active protonic acid sites in the isomerization of n-pentane, Appl. Catal. A Gen. 407 (2011) 91-99.http://dx.doi.org/10.1016/j.fuproc.2016.12.006 [19] A.A. Gabrienko, S.S. Arzumanov, A.V. Toktarev, I.G. Danilova, I.P. Prosvirin, V.V. Kriventsov, V.I. Zaikovskii, D. Freude, A.G. Stepanov, Different efficiency of Zn2+ and ZnO species for methane activation on Zn-modified zeolite, ACS Catal. 7 (3) (2017) 1818-1830.https://doi.org/10.1021/acscatal.6b03036 [20] L. Lin, J.X. Liu, X.T. Zhang, J.L. Wang, C.Y. Liu, G. Xiong, H.C. Guo, Effect of zeolitic hydroxyl nests on the acidity and propane aromatization performance of zinc nitrate impregnation-modified HZSM-5 zeolite, Ind. Eng. Chem. Res. 59 (37) (2020) 16146-16160.https://doi.org/10.1021/acs.iecr.0c02596 [21] P.T. Huyen, V.D. Trinh, M.T. Portilla, C. Martínez, Influence of boron promotion on the physico-chemical properties and catalytic behavior of Zn/ZSM-5 in the aromatization of n-hexane, Catal. Today 366 (2021) 97-102.http://dx.doi.org/10.1016/j.cattod.2020.03.030 [22] X.J. Niu, J. Gao, K. Wang, Q. Miao, M. Dong, G.F. Wang, W.B. Fan, Z.F. Qin, J.G. Wang, Influence of crystal size on the catalytic performance of H-ZSM-5 and Zn/H-ZSM-5 in the conversion of methanol to aromatics, Fuel Process. Technol. 157 (2017) 99-107.http://dx.doi.org/10.1016/j.fuproc.2016.12.006 [23] J.A. Biscardi, G.D. Meitzner, E. Iglesia, Structure and density of active Zn species in Zn/H-ZSM5 propane aromatization catalysts, J. Catal. 179 (1) (1998) 192-202.http://dx.doi.org/10.1006/jcat.1998.2177 [24] H. Berndt, G. Lietz, J. Völter, Zinc promoted H-ZSM-5 catalysts for conversion of propane to aromatics II. Nature of the active sites and their activation, Appl. Catal. A Gen. 146 (2) (1996) 365-379.http://dx.doi.org/10.1016/S0926-860X(96)00124-X [25] A.L. Yakovlev, A.A. Shubin, G.M. Zhidomirov, R.A. van Santen, DFT study of oxygen-bridged Zn2+ ion pairs in Zn/ZSM-5 zeolites, Catal. Lett. 70 (2000) 175-181 [26] A. Bonnin, J.D. Comparot, Y. Pouilloux, V. Coupard, D. Uzio, L. Pinard, Mechanisms of aromatization of dilute ethylene on HZSM-5 and on Zn/HZSM-5 catalysts, Appl. Catal. A Gen. 611 (2021) 117974.http://dx.doi.org/10.1016/j.apcata.2020.117974 [27] L. Lin, X.T. Zhang, N. He, J.X. Liu, Q. Xin, H.C. Guo, Operando dual beam FTIR study of hydroxyl groups and Zn species over defective HZSM-5 zeolite supported zinc catalysts, Catalysts 9 (1) (2019) 100.https://doi.org/10.3390/catal9010100 [28] H.Y. Long, F.Y. Jin, G. Xiong, X.S. Wang, Effect of lanthanum and phosphorus on the aromatization activity of Zn/ZSM-5 in FCC gasoline upgrading, Microporous Mesoporous Mater. 198 (2014) 29-34.http://dx.doi.org/10.1016/j.micromeso.2014.07.016 [29] S.S. Arzumanov, A.A. Gabrienko, A.V. Toktarev, Z.N. Lashchinskaya, D. Freude, J. Haase, A.G. Stepanov, Propane transformation on Zn-modified zeolite. effect of the nature of Zn species on alkane aromatization and hydrogenolysis, J. Phys. Chem. C 123 (50) (2019) 30473-30485.https://doi.org/10.1021/acs.jpcc.9b09718 [30] Y.H. Zhang, M.M. Liu, L. Zhao, S.X. Liu, J.S. Gao, C.M. Xu, M.Z. Ma, Q.F. Meng, Modeling, simulation, and optimization for producing ultra-low sulfur and high-octane number gasoline by separation and conversion of fluid catalytic cracking naphtha, Fuel 299 (2021) 120740.http://dx.doi.org/10.1016/j.fuel.2021.120740 [31] T.J. Fu, J. Shao, Z. Li, Catalytic synergy between the low Si/Al ratio Zn/ZSM-5 and high Si/Al ratio HZSM-5 for high-performance methanol conversion to aromatics, Appl. Catal. B Environ. 291 (2021) 120098.http://dx.doi.org/10.1016/j.apcatb.2021.120098 [32] A. Bonnin, Y. Pouilloux, V. Coupard, D. Uzio, L. Pinard, Deactivation mechanism and regeneration study of Zn/HZSM-5 catalyst in ethylene transformation, Appl. Catal. A Gen. 611 (2021) 117976.http://dx.doi.org/10.1016/j.apcata.2020.117976 [33] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (9-10) (2015) 1051-1069.https://doi.org/10.1515/pac-2014-1117 [34] P. He, A.G. Wang, S.J. Meng, G.M. Bernard, L.J. Liu, V.K. Michaelis, H. Song, Impact of Al sites on the methane co-aromatization with alkanes over Zn/HZSM-5, Catal. Today 323 (2019) 94-104.http://dx.doi.org/10.1016/j.cattod.2018.05.051 [35] T. Pan, Z.J. Wu, K.Y. Zhou, In situ incorporation of Zn into hierarchical ZSM-5 zeolites for olefin hydroisomerization, Ind. Eng. Chem. Res. 59 (27) (2020) 12371-12380.https://doi.org/10.1021/acs.iecr.0c01506 [36] E. Selli, L. Forni, Comparison between the surface acidity of solid catalysts determined by TPD and FTIR analysis of pre-adsorbed pyridine, Microporous Mesoporous Mater. 31 (1-2) (1999) 129-140.http://dx.doi.org/10.1016/S1387-1811(99)00063-3 [37] C.A. Emeis, Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts, J. Catal. 141 (2) (1993) 347-354.http://dx.doi.org/10.1006/jcat.1993.1145 [38] X.F. Su, K. Zhang, Y. Snatenkova, Z. Matieva, X.F. Bai, N. Kolesnichenko, W. Wu, High-efficiency nano[Zn, Al]ZSM-5 bifunctional catalysts for dimethyl ether conversion to isoparaffin-rich gasoline, Fuel Process. Technol. 198 (2020) 106242.http://dx.doi.org/10.1016/j.fuproc.2019.106242 [39] X.F. Su, G.L. Wang, X.F. Bai, W. Wu, L.F. Xiao, Y.J. Fang, J.W. Zhang, Synthesis of nanosized HZSM-5 zeolites isomorphously substituted by gallium and their catalytic performance in the aromatization, Chem. Eng. J. 293 (2016) 365-375.http://dx.doi.org/10.1016/j.cej.2016.02.088 [40] M.D. Xin, E.H. Xing, X.Z. Gao, Y.R. Wang, Y. Ouyang, G.T. Xu, Y.B. Luo, X.T. Shu, Ga substitution during modification of ZSM-5 and its influences on catalytic aromatization performance, Ind. Eng. Chem. Res. 58 (17) (2019) 6970-6981.https://doi.org/10.1021/acs.iecr.9b00295 [41] N. Amin, D.D. Anggoro, Characterization and Activity of Cr, Cu and Ga Modified ZSM-5 for Direct Conversion of Methane to Liquid Hydrocarbons, J. Nat. Gas Chem. 12 (2003) 123-119 [42] J.H. Gao, L.D. Zhang, J.X. Hu, W.H. Li, J.G. Wang, Effect of zinc salt on the synthesis of ZSM-5 for alkylation of benzene with ethanol, Catal. Commun. 10 (12) (2009) 1615-1619.http://dx.doi.org/10.1016/j.catcom.2009.04.029 [43] Y.W. Zhang, Y.M. Zhou, L. Huang, S.J. Zhou, X.L. Sheng, Q.L. Wang, C. Zhang, Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation, Chem. Eng. J. 270 (2015) 352-361.http://dx.doi.org/10.1016/j.cej.2015.01.008 [44] L.Q. Meng, X.C. Zhu, W. Wannapakdee, R. Pestman, M.G. Goesten, L. Gao, A.J.F. van Hoof, E.J.M. Hensen, A dual-templating synthesis strategy to hierarchical ZSM-5 zeolites as efficient catalysts for the methanol-to-hydrocarbons reaction, J. Catal. 361 (2018) 135-142.http://dx.doi.org/10.1016/j.jcat.2018.02.032 [45] K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem. 57 (1985) 603-619 [46] Y.M. Ni, A.M. Sun, X.L. Wu, G.L. Hai, J.L. Hu, T. Li, G.X. Li, The preparation of nano-sized H[Zn, Al]ZSM-5 zeolite and its application in the aromatization of methanol, Microporous Mesoporous Mater. 143 (2-3) (2011) 435-442.http://dx.doi.org/10.1016/j.micromeso.2011.03.029 [47] X.L. Zhu, J.Y. Zhang, M. Cheng, G.W. Wang, M.X. Yu, C.Y. Li, Methanol aromatization over Mg-P-modified[Zn, Al]ZSM-5 zeolites for efficient coproduction of Para-xylene and light olefins, Ind. Eng. Chem. Res. 58 (42) (2019) 19446-19455.https://doi.org/10.1021/acs.iecr.9b03743 [48] J.G. Zhang, W.Z. Qian, C.Y. Kong, F. Wei, Increasing Para-xylene selectivity in making aromatics from methanol with a surface-modified Zn/P/ZSM-5 catalyst, ACS Catal. 5 (5) (2015) 2982-2988.http://dx.doi.org/10.1021/acscatal.5b00192 [49] F. Lónyi, J. Valyon, On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite, Microporous Mesoporous Mater. 47 (2-3) (2001) 293-301.http://dx.doi.org/10.1016/S1387-1811(01)00389-4 [50] D.H. Pan, X.H. Song, X.H. Yang, L.J. Gao, R.P. Wei, J. Zhang, G.M. Xiao, Efficient and selective conversion of methanol to Para-xylene over stable H[Zn, Al]ZSM-5/SiO2 composite catalyst, Appl. Catal. A Gen. 557 (2018) 15-24.http://dx.doi.org/10.1016/j.apcata.2018.03.006 [51] B. Xu, M.H. Tan, X.M. Wu, H.L. Geng, F.E. Song, Q.X. Ma, C.H. Luan, G.H. Yang, Y.S. Tan, Effects of silylation on Ga/HZSM-5 for improved propane dehydroaromatization, Fuel 283 (2021) 118889.http://dx.doi.org/10.1016/j.fuel.2020.118889 [52] L.G. Wang, S.Y. Sang, S.H. Meng, Y. Zhang, Y. Qi, Z.M. Liu, Direct synthesis of Zn-ZSM-5 with novel morphology, Mater. Lett. 61 (8-9) (2007) 1675-1678.http://dx.doi.org/10.1016/j.matlet.2006.07.097 [53] J. Chen, Z.C. Feng, P.L. Ying, C. Li, ZnO clusters encapsulated inside micropores of zeolites studied by UV Raman and laser-induced luminescence spectroscopies, J. Phys. Chem. B 108 (34) (2004) 12669-12676.http://dx.doi.org/10.1021/jp048746x [54] C. Song, X.J. Li, X.X. Zhu, S.L. Liu, F.C. Chen, F. Liu, L.Y. Xu, Influence of the state of Zn species over Zn-ZSM-5/ZSM-11 on the coupling effects of cofeeding n-butane with methanol, Appl. Catal. A Gen. 519 (2016) 48-55.http://dx.doi.org/10.1016/j.apcata.2016.03.023 [55] V.T.T. Ha, A. Sarıoğlan, A. Erdem-Şenatalar, Y.B. Taârit, An EPR and NMR study on Mo/HZSM-5 catalysts for the aromatization of methane:investigation of the location of the pentavalent molybdenum, J. Mol. Catal. A Chem. 378 (2013) 279-284.http://dx.doi.org/10.1016/j.molcata.2013.06.020 [56] F. Mudu, U. Olsbye, B. Arstad, S. Diplas, Y.J. Li, H. Fjellvåg, Aluminium substituted lanthanum based perovskite type oxides, non-stoichiometry and performance in methane partial oxidation by framework oxygen, Appl. Catal. A Gen. 523 (2016) 171-181.http://dx.doi.org/10.1016/j.apcata.2016.05.013 [57] Y.M. Jia, J.W. Wang, K. Zhang, S.B. Liu, G.L. Chen, Y.F. Yang, C.M. Ding, P. Liu, Catalytic conversion of methanol to aromatics over nano-sized HZSM-5 zeolite modified by ZnSiF6·6H2O, Catal. Sci. Technol. 7 (8) (2017) 1776-1791.https://doi.org/10.1039/c7cy00143f [58] J. Chen, L. Chang, H.M. Kang, F.X. Ding, Characterization of Zn promoter in ZnO/HZSM-5 catalyst for propane aromatization, Chin. J. Chem. 22 (2001) 229-232 [59] L.W. Zhang, H.K. Zhang, Z.Q. Chen, Q. Ning, S.Y. Liu, J. Ren, X.D. Wen, Y.W. Li, Insight into the impact of Al distribution on the catalytic performance of 1-octene aromatization over ZSM-5 zeolite, Catal. Sci. Technol. 9 (24) (2019) 7034-7044.https://doi.org/10.1039/c9cy01672d [60] Y.N. Li, S.L. Liu, Z.K. Zhang, S.J. Xie, X.X. Zhu, L.Y. Xu, Aromatization and isomerization of 1-hexene over alkali-treated HZSM-5 zeolites:improved reaction stability, Appl. Catal. A Gen. 338 (1-2) (2008) 100-113.http://dx.doi.org/10.1016/j.apcata.2007.12.026 [61] Y. Fan, J.Z. Yin, G. Shi, H.Y. Liu, X.J. Bao, Mechanistic pathways for olefin hydroisomerization and aromatization in fluid catalytic cracking gasoline hydro-upgrading, Energy Fuels 23 (6) (2009) 3016-3023.http://dx.doi.org/10.1021/ef900030h [62] Y.N. Li, S.L. Liu, S.J. Xie, L.Y. Xu, Promoted metal utilization capacity of alkali-treated zeolite:preparation of Zn/ZSM-5 and its application in 1-hexene aromatization, Appl. Catal. A Gen. 360 (1) (2009) 8-16.http://dx.doi.org/10.1016/j.apcata.2009.02.039 [63] H. Kitagawa, Y. Sendoda, Y. Ono, Transformation of propane into aromatic hydrocarbons over ZSM-5 zeolites, J. Catal. 101 (1) (1986) 12-18.http://dx.doi.org/10.1016/0021-9517(86)90223-X [64] M. Guisnet, N.S. Gnep, F. Alario, Aromatization of short chain alkanes on zeolite catalysts, Appl. Catal. A Gen. 89 (1) (1992) 1-30 |
[1] | Baoyu Liu, Feng Xiong, Jianwen Zhang, Manna Wang, Yi Huang, Yanxiong Fang, Jinxiang Dong. Enhanced ortho-selective t–butylation of phenol over sulfonic acid functionalized mesopore MTW zeolites [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 1-7. |
[2] | Jinlong Liu, Chenye Wang, Xingrui Wang, Chen Zhao, Huiquan Li, Ganyu Zhu, Jianbo Zhang. Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 53-60. |
[3] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 165-172. |
[4] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[5] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 1-8. |
[6] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 193-199. |
[7] | Tingjun Fu, Ran Wang, Kun Ren, Liangliang Zhang, Zhong Li. Intensified shape selectivity and alkylation reaction for the two-step conversion of methanol aromatization to p-xylene [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 240-250. |
[8] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 69-75. |
[9] | Haodi Tan, Minjiao Yang, Yingquan Chen, Xu Chen, Francesco Fantozzi, Pietro Bartocci, Roman Tschentscher, Federica Barontini, Haiping Yang, Hanping Chen. Preparation of aromatic hydrocarbons from catalytic pyrolysis of digestate [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 1-9. |
[10] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 50-62. |
[11] | Linlin Su, Meijun Chen, Li Gong, Hua Yang, Chao Chen, Jun Wu, Ling Luo, Gang Yang, Lulu Long. Boost activation of peroxymonosulfate by iron doped K2-xMn8O16: Mechanism and properties [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 88-97. |
[12] | Chenyang Zhao, Yinhan Cheng, Guangfei Qu, Yongheng Yuan, Fenghui Wu, Ye Liu, Shan Liu, Junyan Li, Ping Ning. High-performance liquid-phase catalytic purification of phosphine in tail gas using Pd(II)/Cu(II) composite [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 98-108. |
[13] | Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 338-348. |
[14] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 25-32. |
[15] | Juan Du, Aibing Chen, Senlin Hou, Xueqing Gao. Self-deposition for mesoporous carbon nanosheet with supercapacitor application [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 34-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||