[1] J. Partanen, P. Backman, R. Backman, M. Hupa, Absorption of HCl by limestone in hot flue gases. Part II:importance of calcium hydroxychloride, Fuel 84 (12-13) (2005) 1674-1684 [2] T. Kameda, N. Uchiyama, T. Yoshioka, Removal of HCl, SO?, and NO by treatment of acid gas with Mg-Al oxide slurry, Chemosphere 82 (4) (2011) 587-591 [3] M. Nunokawa, M. Kobayashi, H. Shirai, Halide compound removal from hot coal-derived gas with reusable sodium-based sorbent, Powder Technol. 180 (1-2) (2008) 216-221 [4] W. Wu, Y.F. Wu, T.W. Wang, D.C. Wang, Q.Y. Gu, B.S. Jin, HCl removal using calcined Ca-Mg-Al layered double hydroxide in the presence of CO2 at medium-high temperature, Catalysts 10 (1) (2019) 22 [5] K.A. Lokhandwala, S. Segelke, P. Nguyen, R.W. Baker, T.T. Su, I. Pinnau, A membrane process to recover chlorine from chloralkali plant tail gas, Ind. Eng. Chem. Res. 38 (10) (1999) 3606-3613 [6] A. Lindbråthen, D.R. Grainger, M.B. Hägg, Membranes for purification of chlorine in the chlor-alkali industry:a viable option, Sep. Sci. Technol. 42 (14) (2007) 3049-3070 [7] M.F. San Román, I. Ortiz Gándara, R. Ibañez, I. Ortiz, Hybrid membrane process for the recovery of major components (zinc, iron and HCl) from spent pickling effluents, J. Membr. Sci. 415-416 (2012) 616-623 [8] X.F. Zhu, S.L. Zheng, Y. Zhang, Z.Z. Fang, M. Zhang, P. Sun, Q. Li, Y. Zhang, P. Li, W. Jin, Potentially more ecofriendly chemical pathway for production of high-purity TiO2 from titanium slag, ACS Sustain. Chem. Eng. 7 (5) (2019) 4821-4830 [9] S. Kurella, M. Balla, P.K. Bhukya, Scrubbing of HCl gas from synthesis gas in a multistage dual-flow sieve plate wet scrubber by alkaline solution, J. Chem. Eng. Process. Technol. 6 (5) (2015)1000250 [10] M. Bal, T.T. Reddy, B. Meikap, Removal of HCl gas from off gases using self-priming venturi scrubber, J. Hazard. Mater., 364 (2019)406-418 [11] K.D. Kim, S.M. Jeon, N. Hasolli, K.S. Lee, J.R. Lee, J.W. Han, H.T. Kim, Y.O. Park, HCl removal characteristics of calcium hydroxide at the dry-type sorbent reaction accelerator using municipal waste incinerator flue gas at a real site, Korean J. Chem. Eng. 34 (3) (2017) 747-756 [12] J. Liu, M.S. Tomassone, X.Y. Kuang, S.H. Zhou, Operation parameters and design optimization based on CFD simulations on a novel spray dispersion desulfurization tower, Fuel Process. Technol. 209 (2020) 106514 [13] M. Ochowiak, S. Włodarczak, I. Pavlenko, D. Janecki, A. Krupińska, M. Markowska, Study on interfacial surface in modified spray tower, Processes 7 (8) (2019) 532 [14] Z.L. Cheng, L. Jiang, Y.W. Cai, C.F. Lu, G. Li, X.J. Quan, Removal model of fine particles from the flue gas of the coal-fired power plant in a water-sparged aerocyclone, Can. J. Chem. Eng. 97 (12) (2019) 3148-3155 [15] F.C. Qiu, H.F. Wu, X.J. Quan, Investigation of gas-liquid two-phase flow field behavior based on computational fluid dynamics in a water-sparged aerocyclone, Asia-Pac. J. Chem. Eng. 13 (6) (2018) e2252. DOI:10.1002/apj.2252 [16] Y.M. Wang, X.J. Yang, P.B. Fu, L. Ma, A.L. Liu, M.Y. He, Application of gas cyclone-liquid jet absorption separator for flue-gas desulfurization, Aerosol Air Qual. Res. 17 (11) (2017) 2705-2714 [17] L. Ma, B.W. Feng, Z.H. Zhao, L. Peng, H.B. Jin, P.B. Fu, Jet absorption and desulfurization technology of sulfur waste gas in the acrylonitrile apparatus, Chem. Eng. Process.-Process. Intensif. 153 (2020) 107957 [18] L. Ma, L. Peng, Z.W. Zhang, C.C. Tian, Influence of overflow port selection on the gas desulfurization of gas cyclone-liquid jet absorption separator, Asia-Pac. J. Chem. Eng. 15 (4) (2020) e2462 [19] L. Ma, Z.H. Zhao, L. Peng, X.J. Yang, P.B. Fu, Y. Liu, Y. Huang, Application of gas cyclone-liquid jet absorption separator for purification of tail gas containing ammonia, Environ Technol 40 (25) (2019) 3392-3402 [20] H.H. Tung, R.S.H. Mah, Modeling liquid mass transfer in higee separation process, Chem. Eng. Commun. 39 (1-6) (1985) 147-153 [21] Chen YS, Hsu YC, Lin CC, Tai CY, Liu HS, Volatile organic compounds absorption in a cross-flow rotating packed bed, Environ Sci Technol 42 (7) (2008) 2631-2636 [22] X.H. Zheng, G.W. Chu, D.J. Kong, Y. Luo, J.P. Zhang, H.K. Zou, L.L. Zhang, J.F. Chen, Mass transfer intensification in a rotating packed bed with surface-modified nickel foam packing, Chem. Eng. J. 285 (2016) 236-242 [23] M.J. Su, Y. Luo, G.W. Chu, W. Liu, X.H. Zheng, J.F. Chen, Gas-side mass transfer in a rotating packed bed with structured nickel foam packing, Ind. Eng. Chem. Res. 57 (13) (2018) 4743-4747 [24] F. Yoshida, K. Akita, Performance of gas bubble columns:Volumetric liquid-phase mass transfer coefficient and gas holdup, AIChE J. 11 (1) (1965) 9-13 [25] M.N. Kashid, A. Renken, L. Kiwi-Minsker, Gas-liquid and liquid-liquid mass transfer in microstructured reactors, Chem. Eng. Sci. 66 (17) (2011) 3876-3897 [26] M. Opletal, P. Novotný, V. Linek, T. Moucha, M. Kordač, Gas suction and mass transfer in gas-liquid up-flow ejector loop reactors. Effect of nozzle and ejector geometry, Chem. Eng. J. 353 (2018) 436-452 [27] J.M. MacInnes, A.A. Ayash, Mass transfer characteristics of rotating spiral gas-liquid contacting, Chem. Eng. Sci. 175 (2018) 320-334 |