Chinese Journal of Chemical Engineering ›› 2022, Vol. 45 ›› Issue (5): 68-77.DOI: 10.1016/j.cjche.2021.04.039
Previous Articles Next Articles
Huawang Zhao, Xiaomin Wu, Zhiwei Huang, Ziyi Chen, Guohua Jing
Received:
2021-02-26
Revised:
2021-03-28
Online:
2022-06-22
Published:
2022-05-28
Contact:
Guohua Jing,E-mail:zhoujing@hqu.edu.cn
Supported by:
Huawang Zhao, Xiaomin Wu, Zhiwei Huang, Ziyi Chen, Guohua Jing
通讯作者:
Guohua Jing,E-mail:zhoujing@hqu.edu.cn
基金资助:
Huawang Zhao, Xiaomin Wu, Zhiwei Huang, Ziyi Chen, Guohua Jing. A comparative study of the thermal and hydrothermal aging effect on Cu-SSZ-13 for the selective catalytic reduction of NOx with NH3[J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 68-77.
Huawang Zhao, Xiaomin Wu, Zhiwei Huang, Ziyi Chen, Guohua Jing. A comparative study of the thermal and hydrothermal aging effect on Cu-SSZ-13 for the selective catalytic reduction of NOx with NH3[J]. 中国化学工程学报, 2022, 45(5): 68-77.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.04.039
[1] A.M. Beale, F. Gao, I. Lezcano-Gonzalez, C.H. Peden, J. Szanyi, Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials, Chem Soc Rev 44 (20) (2015) 7371-7405 [2] J.H. Wang, H.W. Zhao, G. Haller, Y.D. Li, Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-Chabazite catalysts, Appl. Catal. B:Environ. 202 (2017) 346-354 [3] H.Y. Chen, J.E. Collier, D.X. Liu, L. Mantarosie, D. Durán-Martín, V. Novák, R.R. Rajaram, D. Thompsett, Low temperature NO storage of zeolite supported Pd for low temperature diesel engine emission control, Catal. Lett. 146 (9) (2016) 1706-1711 [4] Y.J. Kim, J.K. Lee, K.M. Min, S.B. Hong, I.S. Nam, B.K. Cho, Hydrothermal stability of CuSSZ13 for reducing NOx by NH3, J. Catal. 311 (2014) 447-457 [5] F. Gao, E.D. Walter, E.M. Karp, J.Y. Luo, R.G. Tonkyn, J.H. Kwak, J. Szanyi, C.H.F. Peden, Structure-activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies, J. Catal. 300 (2013) 20-29 [6] F. Gao, J.H. Kwak, J. Szanyi, C.H.F. Peden, Current understanding of Cu-exchanged chabazite molecular sieves for use as commercial diesel engine DeNO_x catalysts, Top. Catal. 56 (15-17) (2013) 1441-1459 [7] Y.L. Shan, Y. Sun, J.P. Du, Y. Zhang, X.Y. Shi, Y.B. Yu, W.P. Shan, H. He, Hydrothermal aging alleviates the inhibition effects of NO2 on Cu-SSZ-13 for NH3-SCR, Appl. Catal. B:Environ. 275 (2020) 119105 [8] Y.L. Shan, W.P. Shan, X.Y. Shi, J.P. Du, Y.B. Yu, H. He, A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13, Appl. Catal. B:Environ. 264 (2020) 118511 [9] F. Gao, Y.L. Wang, N.M. Washton, M. Kollár, J. Szanyi, C.H.F. Peden, Effects of alkali and alkaline earth cocations on the activity and hydrothermal stability of Cu/SSZ-13 NH3-SCR catalysts, ACS Catal. 5 (11) (2015) 6780-6791 [10] J. Song, Y.L. Wang, E.D. Walter, N.M. Washton, D.H. Mei, L. Kovarik, M.H. Engelhard, S. Prodinger, Y. Wang, C.H.F. Peden, F. Gao, Toward rational design of Cu/SSZ-13 selective catalytic reduction catalysts:Implications from atomic-level understanding of hydrothermal stability, ACS Catal. 7 (12) (2017) 8214-8227 [11] J.H. Kwak, R.G. Tonkyn, D.H. Kim, J. Szanyi, C.H.F. Peden, Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3, J. Catal. 275 (2) (2010) 187-190 [12] J.H. Kwak, D. Tran, S.D. Burton, J. Szanyi, J.H. Lee, C.H.F. Peden, Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites, J. Catal. 287 (2012) 203-209 [13] Y.H. Ma, H.W. Zhao, C.J. Zhang, Y.N. Zhao, H. Chen, Y.D. Li, Enhanced hydrothermal stability of Cu-SSZ-13 by compositing with Cu-SAPO-34 in selective catalytic reduction of nitrogen oxides with ammonia, Catal. Today 355 (2020) 627-634 [14] Y.L. Shan, J.P. Du, Y.B. Yu, W.P. Shan, X.Y. Shi, H. He, Precise control of post-treatment significantly increases hydrothermal stability of in situ synthesized cu-zeolites for NH3-SCR reaction, Appl. Catal. B:Environ. 266 (2020) 118655 [15] J. Zhang, Y.L. Shan, L. Zhang, J.P. Du, H. He, S.C. Han, C. Lei, S. Wang, W.B. Fan, Z.C. Feng, X.L. Liu, X.J. Meng, F.S. Xiao, Importance of controllable Al sites in CHA framework by crystallization pathways for NH3-SCR reaction, Appl. Catal. B:Environ. 277 (2020) 119193 [16] L. Ma, Y.S. Cheng, G. Cavataio, R.W. McCabe, L.X. Fu, J.H. Li, Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NOx in diesel exhaust, Chem. Eng. J. 225 (2013) 323-330 [17] F. Gao, J. Szanyi, On the hydrothermal stability of Cu/SSZ-13 SCR catalysts, Appl. Catal. A:Gen. 560 (2018) 185-194 [18] S. Han, Q. Ye, S.Y. Cheng, T.F. Kang, H.X. Dai, Effect of the hydrothermal aging temperature and Cu/Al ratio on the hydrothermal stability of CuSSZ-13 catalysts for NH3-SCR, Catal. Sci. Technol. 7 (3) (2017) 703-717 [19] S.J. Schmieg, S.H. Oh, C.H. Kim, D.B. Brown, J.H. Lee, C.H.F. Peden, D.H. Kim, Thermal durability of Cu-CHA NH3-SCR catalysts for diesel NOx reduction, Catal. Today 184 (1) (2012) 252-261 [20] D. Wang, Y. Jangjou, Y. Liu, M.K. Sharma, J.Y. Luo, J.H. Li, K. Kamasamudram, W.S. Epling, A comparison of hydrothermal aging effects on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts, Appl. Catal. B:Environ. 165 (2015) 438-445 [21] S. Prodinger, M.A. Derewinski, Y.L. Wang, N.M. Washton, E.D. Walter, J. Szanyi, F. Gao, Y. Wang, C.H.F. Peden, Sub-micron Cu/SSZ-13:Synthesis and application as selective catalytic reduction (SCR) catalysts, Appl. Catal. B:Environ. 201 (2017) 461-469 [22] K. Iyoki, Y. Yamaguchi, A. Endo, Y. Yonezawa, T. Umeda, H. Yamada, Y. Yanaba, T. Yoshikawa, K. Ohara, K. Yoshida, Y. Sasaki, T. Okubo, T. Wakihara, Formation of a dense non-crystalline layer on the surface of zeolite Y crystals under high-temperature steaming conditions, Microporous Mesoporous Mater. 268 (2018) 77-83 [23] H.W. Zhao, Y.N. Zhao, Y.H. Ma, X. Yong, M. Wei, H. Chen, C.J. Zhang, Y.D. Li, Enhanced hydrothermal stability of a Cu-SSZ-13 catalyst for the selective reduction of NOx by NH3 synthesized with SAPO-34 micro-crystallite as seed, J. Catal. 377 (2019) 218-223 [24] D.W. Fickel, R.F. Lobo, Copper coordination In Cu-SSZ-13 and Cu-SSZ-16 investigated by variable-temperature XRD, J. Phys. Chem. C 114 (3) (2010) 1633-1640 [25] L. Wondraczek, G.J. Gao, D. Möncke, T. Selvam, A. Kuhnt, W. Schwieger, D. Palles, E.I. Kamitsos, Thermal collapse of SAPO-34 molecular sieve towards a perfect glass, J. Non-Cryst. Solids 360 (2013) 36-40 [26] G.N. Greaves, F. Meneau, A. Sapelkin, L.M. Colyer, I. ap Gwynn, S. Wade, G. Sankar, The rheology of collapsing zeolites amorphized by temperature and pressure, Nat Mater 2 (9) (2003) 622-629 [27] A.Y. Wang, P. Arora, D. Bernin, A. Kumar, K. Kamasamudram, L. Olsson, Investigation of the robust hydrothermal stability of Cu/LTA for NH3-SCR reaction, Appl. Catal. B:Environ. 246 (2019) 242-253 [28] A.Y. Wang, K. Lindgren, M.Q. Di, D. Bernin, P.A. Carlsson, M. Thuvander, L. Olsson, Insight into hydrothermal aging effect on Pd sites over Pd/LTA and Pd/SSZ-13 as PNA and CO oxidation monolith catalysts, Appl. Catal. B:Environ. 278 (2020) 119315 [29] J. Wang, L. Shao, C. Wang, J.Q. Wang, M.Q. Shen, W. Li, Controllable preparation of various crystal size and nature of intra-crystalline diffusion in Cu/SSZ-13 NH3-SCR catalysts, J. Catal. 367 (2018) 221-228 [30] H.W. Zhao, Y.N. Zhao, M.K. Liu, X.H. Li, Y.H. Ma, X. Yong, H. Chen, Y.D. Li, Phosphorus modification to improve the hydrothermal stability of a Cu-SSZ-13 catalyst for selective reduction of NOx with NH3, Appl. Catal. B:Environ. 252 (2019) 230-239 [31] K. Khivantsev, N.R. Jaegers, L. Kovarik, J.Z. Hu, F. Gao, Y. Wang, J. Szanyi, Palladium/zeolite low temperature passive NOx adsorbers (PNA):Structure-adsorption property relationships for hydrothermally aged PNA materials, Emiss. Control. Sci. Technol. 6 (2) (2020) 126-138 [32] H.W. Zhao, H.S. Li, X.H. Li, M.K. Liu, Y.D. Li, The promotion effect of Fe to Cu-SAPO-34 for selective catalytic reduction of NOx with NH3, Catal. Today 297 (2017) 84-91 [33] F. Gao, E.D. Walter, M. Kollar, Y.L. Wang, J. Szanyi, C.H.F. Peden, Understanding ammonia selective catalytic reduction kinetics over Cu/SSZ-13 from motion of the Cu ions, J. Catal. 319 (2014) 1-14 [34] X.S. Dong, J.H. Wang, H.W. Zhao, Y.D. Li, The promotion effect of CeOx on Cu-SAPO-34 catalyst for selective catalytic reduction of NOx with ammonia, Catal. Today 258 (2015) 28-34 [35] A.Y. Wang, Y. Chen, E.D. Walter, N.M. Washton, D.H. Mei, T. Varga, Y.L. Wang, J. Szanyi, Y. Wang, C.H.F. Peden, F. Gao, Unraveling the mysterious failure of Cu/SAPO-34 selective catalytic reduction catalysts, Nat Commun 10 (1) (2019) 1137 [36] T. Yu, M.H. Xu, Y. Huang, J.Q. Wang, J. Wang, L. Lv, G. Qi, W. Li, M.Q. Shen, Insight of platinum poisoning Cu/SAPO-34 during NH3-SCR and its promotion on catalysts regeneration after hydrothermal treatment, Appl. Catal. B:Environ. 204 (2017) 525-536 [37] L.J. Xie, F.D. Liu, L.M. Ren, X.Y. Shi, F.S. Xiao, H. He, Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3, Environ Sci Technol 48 (1) (2014) 566-572 [38] J. Hun Kwak, H.Y. Zhu, J.H. Lee, C.H. Peden, J. Szanyi, Two different cationic positions in Cu-SSZ-13?Chem Commun (Camb) 48 (39) (2012) 4758-4760 [39] C. Paolucci, A.A. Parekh, I. Khurana, J.R. di Iorio, H. Li, J.D. Albarracin Caballero, A.J. Shih, T. Anggara, W.N. Delgass, J.T. Miller, F.H. Ribeiro, R. Gounder, W.F. Schneider, Catalysis in a cage:Condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites, J Am Chem Soc 138 (18) (2016) 6028-6048 [40] C. Paolucci, J.R. di Iorio, F.H. Ribeiro, R. Gounder, W.F. Schneider, Catalysis science of NOx selective catalytic reduction with ammonia over Cu-SSZ-13 and Cu-SAPO-34, Adv. Catal. 59 (2016) 1-107 [41] Y. Ma, X.D. Wu, S.Q. Cheng, L. Cao, L.P. Liu, Y.F. Xu, J.B. Liu, R. Ran, Z.C. Si, D. Weng, Relationships between copper speciation and Brønsted acidity evolution over Cu-SSZ-13 during hydrothermal aging, Appl. Catal. A:Gen. 602 (2020) 117650 [42] J.H. Kwak, R. Tonkyn, D. Tran, D.H. Mei, S.J. Cho, L. Kovarik, J.H. Lee, C.H.F. Peden, J. Szanyi, Size-dependent catalytic performance of CuO on γ-Al2O3:NO reduction versus NH3 oxidation, ACS Catal. 2 (7) (2012) 1432-1440 [43] C. Paolucci, A.A. Verma, S.A. Bates, V.F. Kispersky, J.T. Miller, R. Gounder, W.N. Delgass, F.H. Ribeiro, W.F. Schneider, Isolation of the copper redox steps in the standard selective catalytic reduction on Cu-SSZ-13, Angew Chem Int Ed Engl 53 (44) (2014) 11828-11833 [44] A.A. Verma, S.A. Bates, T. Anggara, C. Paolucci, A.A. Parekh, K. Kamasamudram, A. Yezerets, J.T. Miller, W.N. Delgass, W.F. Schneider, F.H. Ribeiro, NO oxidation:A probe reaction on Cu-SSZ-13, J. Catal. 312 (2014) 179-190 [45] S.A. Bates, A.A. Verma, C. Paolucci, A.A. Parekh, T. Anggara, A. Yezerets, W.F. Schneider, J.T. Miller, W.N. Delgass, F.H. Ribeiro, Identification of the active Cu site in standard selective catalytic reduction with ammonia on Cu-SSZ-13, J. Catal. 312 (2014) 87-97 [46] T.W. Hansen, A.T. Delariva, S.R. Challa, A.K. Datye, Sintering of catalytic nanoparticles:Particle migration or Ostwald ripening?Acc Chem Res 46 (8) (2013) 1720-1730 [47] A.J. Hill, C.Y. Seo, X.Y. Chen, A. Bhat, G.B. Fisher, A. Lenert, J.W. Schwank, Thermally induced restructuring of Pd@CeO2 and Pd@SiO2 nanoparticles as a strategy for enhancing low-temperature catalytic activity, ACS Catal. 10 (3) (2020) 1731-1741 [48] L.M. Colyer, G.N. Greaves, A.J. Dent, K.K. Fox, S.W. Carr, R.H. Jones, In situ study of ceramic formation from Co2+ and Zn2+ exchanged zeolite-A using combined XRD/XAFS techniques, Nucl. Instruments Methods Phys. Res. Sect. B:Beam Interactions Mater. Atoms 97 (1-4) (1995) 107-110 [49] L.M. Colyer, G.N. Greaves, S.W. Carr, K.K. Fox, Collapse and recrystallization processes in zinc-exchanged zeolite-A:A combined X-ray diffraction, XAFS, and NMR study, J. Phys. Chem. B 101 (48) (1997) 10105-10114 [50] Thomas, J. L.; Mange, M.; Eyraud, C. Molecular SieVe Zeolites-I; Advances in Chemistry 101; [51] [[51]] W. Schmitz, H. Siegel, R. Schöllner, Thermal decomposition of partially Mg2+-exchanged forms of zeolite A investigated by DTA-and X-ray high temperature methods, Krist. Techn. 16 (3) (1981) 385-389 [52] [[52]] G. Sankar, P.A. Wright, S. Natarajan, J.M. Thomas, G.N. Greaves, A.J. Dent, B.R. Dobson, C.A. Ramsdale, R.H. Jones, Combined QuEXAFS-XRD:A new technique in high-temperature materials chemistry; an illustrative in situ study of the zinc oxide-enhanced solid-state production of cordierite from a precursor zeolite, J. Phys. Chem. 97 (38) (1993) 9550-9554 [53] [[53]] C. Wang, C. Wang, J. Wang, J.Q. Wang, M.Q. Shen, W. Li, Effects of Na+ on Cu/SAPO-34 for ammonia selective catalytic reduction, J Environ Sci (China) 70 (2018) 20-28 [54] [[54]] C. Wang, J. Wang, J.Q. Wang, Z.X. Wang, Z.X. Chen, X.L. Li, M.Q. Shen, W.J. Yan, X. Kang, The role of impregnated sodium ions in Cu/SSZ-13 NH3-SCR catalysts, Catalysts 8 (12) (2018) 593 [55] [[55]] S.Y. Huang, J. Wang, J.Q. Wang, C. Wang, M.Q. Shen, W. Li, The influence of crystallite size on the structural stability of Cu/SAPO-34 catalysts, Appl. Catal. B:Environ. 248 (2019) 430-440 |
[1] | Shuang Qiu, Yonghou Xiao, Haoran Wu, Shengnan Lu, Qidong Zhao, Gaohong He. One-pot synthesis of bimetallic CeCu-SAPO-34 for high-efficiency selective catalytic reduction of nitrogen oxides with NH3 at low temperature [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 193-202. |
[2] | Yaoyao Peng, Lei Song, Siru Lu, Ziyu Su, Kui Ma, Siyang Tang, Shan Zhong, Hairong Yue, Bin Liang. Superior resistance to alkali metal potassium of vanadium-based NH3-SCR catalyst promoted by the solid superacid SO42--TiO2 [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 246-256. |
[3] | Xin Yong, Hong Chen, Huawang Zhao, Miao Wei, Yingnan Zhao, Yongdan Li. Insight into SO2 poisoning and regeneration of one-pot synthesized Cu-SSZ-13 catalyst for selective reduction of NOx by NH3 [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 184-193. |
[4] | Pengnan Ma, Jiankang Wang, Hanxiao Meng, Laiquan Lv, Hao Fang, Kefa Cen, Hao Zhou. Influence of coke rate on thermal treatment of waste selective catalytic reduction (SCR) catalyst during iron ore sintering [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 415-423. |
[5] | Ben Liu, Nangui Lv, Chan Wang, Hongwei Zhang, Yuanyuan Yue, Jingdong Xu, Xiaotao Bi, Xiaojun Bao. Redistributing Cu species in Cu-SSZ-13 zeolite as NH3-SCR catalyst via a simple ion-exchange [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 329-341. |
[6] | Shuai Fan, Huiyuan Cheng, Manman Feng, Xuemei Wu, Zihao Fan, Dongwei Pan, Gaohong He. Catalytic hydrogenation performance of ZIF-8 carbide for electrochemical reduction of carbon dioxide [J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 144-153. |
[7] | Junqi Tian, Yanqin Li, Xia Zhou, Yongbin Yao, Denghao Wang, Jianming Dan, Bin Dai, Qiang Wang, Feng Yu. Overwhelming low ammonia escape and low temperature denitration efficiency via MnOx-decorated two-dimensional MgAl layered double oxides [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1925-1934. |
[8] | Minhua Zhang, Baojuan Huang, Haoxi Jiang, Yifei Chen. Research progress in the SO2 resistance of the catalysts for selective catalytic reduction of NOx [J]. Chin.J.Chem.Eng., 2017, 25(12): 1695-1705. |
[9] | Shuli Bai, Shengtao Jiang, Huanying Li, Yujiang Guan. Carbon nanotubes loaded with vanadium oxide for reduction NO with NH3 at low temperature [J]. , 2015, 23(3): 516-519. |
[10] | DAI Chengna, LEI Zhigang, WANG Yuli, ZHANG Runduo, CHEN Biaohua. Transfer and Reaction Performances of Selective Catalytic Reduction of N2O with CO over Monolith Catalysts [J]. Chin.J.Chem.Eng., 2013, 21(8): 835-843. |
[11] | GAO Yan, LUAN Tao, LV Tao, CHENG Kai, XU Hongming. Performance of V2O5-WO3-MoO3/TiO2 Catalyst for Selective Catalytic Reduction of NOx by NH3 [J]. Chin.J.Chem.Eng., 2013, 21(1): 1-7. |
[12] | LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst [J]. , 2010, 18(5): 721-729. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||