Chinese Journal of Chemical Engineering ›› 2022, Vol. 49 ›› Issue (9): 213-223.DOI: 10.1016/j.cjche.2021.11.026
• Regular • Previous Articles Next Articles
Weilong Shi1,3, Jie Gao2, Haoran Sun3, Zhongyi Liu1, Feng Guo3, Lijing Wang1,4
Received:
2021-08-28
Revised:
2021-10-19
Online:
2022-10-19
Contact:
Zhongyi Liu,E-mail:liuzhongyi@zzu.edu.cn;Feng Guo,E-mail:gfeng0105@126.com;Lijing Wang,E-mail:wanglijing1989@126.com
Supported by:
Weilong Shi1,3, Jie Gao2, Haoran Sun3, Zhongyi Liu1, Feng Guo3, Lijing Wang1,4
通讯作者:
Zhongyi Liu,E-mail:liuzhongyi@zzu.edu.cn;Feng Guo,E-mail:gfeng0105@126.com;Lijing Wang,E-mail:wanglijing1989@126.com
基金资助:
Weilong Shi, Jie Gao, Haoran Sun, Zhongyi Liu, Feng Guo, Lijing Wang. Highly efficient visible/near-infrared light photocatalytic degradation of antibiotic wastewater over 3D yolk-shell ZnFe2O4 supported 0D carbon dots with up-conversion property[J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 213-223.
Weilong Shi, Jie Gao, Haoran Sun, Zhongyi Liu, Feng Guo, Lijing Wang. Highly efficient visible/near-infrared light photocatalytic degradation of antibiotic wastewater over 3D yolk-shell ZnFe2O4 supported 0D carbon dots with up-conversion property[J]. 中国化学工程学报, 2022, 49(9): 213-223.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.11.026
[1] Y.H. Yang, X.L. Li, C. Lu, W.H. Huang, G-C3N4 nanosheets coupled with TiO2 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity for hydrogen production, Catal. Lett. 149 (10) (2019) 2930-2939.http://dx.doi.org/10.1007/s10562-019-02805-8 [2] J.F. Niu, S.Y. Ding, L.W. Zhang, J.B. Zhao, C.H. Feng, Visible-light-mediated Sr-Bi2O3 photocatalysis of tetracycline:Kinetics, mechanisms and toxicity assessment, Chemosphere 93 (1) (2013) 1-8.https://pubmed.ncbi.nlm.nih.gov/23706401/ [3] H. Xu, Q. Ye, Q.G. Wang, P. Zhou, X.W. Huo, Y.Q. Wang, X. Huang, G.Y. Zhou, J. Zhang, Enhancement of organic contaminants degradation at low dosages of Fe(III) and H2O2 in g-C3N4 promoted Fe(III)/H2O2 system under visible light irradiation, Sep. Purif. Technol. 251 (2020) 117333.http://dx.doi.org/10.1016/j.seppur.2020.117333 [4] F. Guo, W.L. Shi, M.Y. Li, Y. Shi, H.B. Wen, 2D/2D Z-scheme heterojunction of CuInS2/g-C3N4 for enhanced visible-light-driven photocatalytic activity towards the degradation of tetracycline, Sep. Purif. Technol. 210 (2019) 608-615.http://dx.doi.org/10.1016/j.seppur.2018.08.055 [5] F. Guo, M.Y. Li, H.J. Ren, X.L. Huang, W.X. Hou, C. Wang, W.L. Shi, C.Y. Lu, Fabrication of p-n CuBi2O4/MoS2 heterojunction with nanosheets-on-microrods structure for enhanced photocatalytic activity towards tetracycline degradation, Appl. Surf. Sci. 491 (2019) 88-94.http://dx.doi.org/10.1016/j.apsusc.2019.06.158 [6] F. Guo, M.Y. Li, H.J. Ren, X.L. Huang, K.K. Shu, W.L. Shi, C.Y. Lu, Facile bottom-up preparation of Cl-doped porous g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline under visible light, Sep. Purif. Technol. 228 (2019) 115770.http://dx.doi.org/10.1016/j.seppur.2019.115770 [7] Q. Zhu, Y.K. Sun, F.S. Na, J. Wei, S. Xu, Y.L. Li, F. Guo, Fabrication of CdS/titanium-oxo-cluster nanocomposites based on a Ti32 framework with enhanced photocatalytic activity for tetracycline hydrochloride degradation under visible light, Appl. Catal. B Environ. 254 (2019) 541-550.http://dx.doi.org/10.1016/j.apcatb.2019.05.006 [8] C.Y. Lu, F. Guo, Q.Z. Yan, Z.J. Zhang, D. Li, L.P. Wang, Y.H. Zhou, Hydrothermal synthesis of type II ZnIn2S4/BiPO4 heterojunction photocatalyst with dandelion-like microflower structure for enhanced photocatalytic degradation of tetracycline under simulated solar light, J. Alloys Compd. 811 (2019) 151976.http://dx.doi.org/10.1016/j.jallcom.2019.151976 [9] Q.Y. Tian, W.J. Yao, W. Wu, C.Z. Jiang, NIR light-activated upconversion semiconductor photocatalysts, Nanoscale horiz. 4 (1) (2019) 10-25.https://doi.org/10.1039/c8nh00154e [10] B.T. Sun, P.Y. Qiu, Z.Q. Liang, Y.J. Xue, X.L. Zhang, L. Yang, H.Z. Cui, J. Tian, The fabrication of 1D/2D CdS nanorod@Ti3C2 MXene composites for good photocatalytic activity of hydrogen generation and ammonia synthesis, Chem. Eng. J. 406 (2021) 127177.http://dx.doi.org/10.1016/j.cej.2020.127177 [11] W. Xiao, X.H. Wang, R.X. Liu, J. Wu, Quinuclidine and its derivatives as hydrogen-atom-transfer catalysts in photoinduced reactions, Chin. Chem. Lett. 32 (6) (2021) 1847-1856.http://dx.doi.org/10.1016/j.cclet.2021.02.009 [12] Z.Q. Liang, X.F. Meng, Y.J. Xue, X.Y. Chen, Y.L. Zhou, X.L. Zhang, H.Z. Cui, J. Tian, Facile preparation of metallic 1T phase molybdenum selenide as cocatalyst coupled with graphitic carbon nitride for enhanced photocatalytic H2 production, J. Colloid Interface Sci. 598 (2021) 172-180.http://dx.doi.org/10.1016/j.jcis.2021.04.066 [13] P.Y. Qiu, J.W. Wang, Z.Q. Liang, Y.J. Xue, Y.L. Zhou, X.L. Zhang, H.Z. Cui, G.Q. Cheng, J. Tian, The metallic 1T-WS2 as cocatalysts for promoting photocatalytic N2 fixation performance of Bi5O7Br nanosheets, Chin. Chem. Lett. 32 (11) (2021) 3501-3504.http://dx.doi.org/10.1016/j.cclet.2021.03.077 [14] J.J. Pan, F. Guo, H.R. Sun, Y.X. Shi, W.L. Shi, Nanodiamonds anchored on porous ZnSnO3 cubes as an efficient composite photocatalyst with improved visible-light photocatalytic degradation of tetracycline, Sep. Purif. Technol. 263 (2021) 118398.http://dx.doi.org/10.1016/j.seppur.2021.118398 [15] R.J. Guo, R. Tian, D.L. Shi, H. Li, H.Z. Liu, S-doped ZnSnO3 nanoparticles with narrow band gaps for photocatalytic wastewater treatment, ACS Appl. Nano Mater. 2 (12) (2019) 7755-7765.https://doi.org/10.1021/acsanm.9b01804 [16] G.D. Fan, X. Lin, Y.F. You, B.H. Du, X. Li, J. Luo, Magnetically separable ZnFe2O4/Ag3PO4/g-C3N4 photocatalyst for inactivation of Microcystis aeruginosa:Characterization, performance and mechanism, J. Hazard. Mater. 421 (2022) 126703.http://dx.doi.org/10.1016/j.jhazmat.2021.126703 [17] L.J. Wang, R.Q. Guan, Y.F. Qi, F.L. Zhang, P. Li, J.M. Wang, P. Qu, G. Zhou, W.L. Shi, Constructing Zn-P charge transfer bridge over ZnFe2O4-black phosphorus 3D microcavity structure:efficient photocatalyst design in visible-near-infrared region, J. Colloid Interface Sci. 600 (2021) 463-472.http://dx.doi.org/10.1016/j.jcis.2021.05.043 [18] E. Mrotek, S. Dudziak, I. Malinowska, D. Pelczarski, Z. Ryżyńska, A. Zielińska-Jurek, Improved degradation of etodolac in the presence of core-shell ZnFe2O4/SiO2/TiO2 magnetic photocatalyst, Sci. Total. Environ. 724 (2020) 138167.http://dx.doi.org/10.1016/j.scitotenv.2020.138167 [19] K.K. Das, S. Patnaik, B. Nanda, A.C. Pradhan, K. Parida, ZnFe2O4-decorated mesoporous Al2O3Modified MCM-41:a solar-light-active photocatalyst for the effective removal of phenol and Cr (VI) from water, ChemistrySelect 4 (5) (2019) 1806-1819.https://doi.org/10.1002/slct.201803209 [20] F.X. Wang, Y.L. Chen, R.S. Zhu, J.M. Sun, Novel synthesis of magnetic, porous C/ZnFe 2 O4 photocatalyst with enhanced activity under visible light based on the Fenton-like reaction, Dalton Trans. 46 (34) (2017) 11306-11317.https://pubmed.ncbi.nlm.nih.gov/28805864/ [21] W.Q. Zhang, M. Wang, W.J. Zhao, B.Q. Wang, Magnetic composite photocatalyst ZnFe2O4/BiVO4:synthesis, characterization, and visible-light photocatalytic activity, Dalton Trans. 42 (43) (2013) 15464.https://doi.org/10.1039/c3dt52068d [22] T.H. Yu, W.Y. Cheng, K.J. Chao, S.Y. Lu, ZnFe2O4 decorated CdS nanorods as a highly efficient, visible light responsive, photochemically stable, magnetically recyclable photocatalyst for hydrogen generation, Nanoscale 5 (16) (2013) 7356-7360.https://pubmed.ncbi.nlm.nih.gov/23824310/ [23] Y.J. Yao, J.C. Qin, H. Chen, F.Y. Wei, X.T. Liu, J.L. Wang, S.B. Wang, One-pot approach for synthesis of N-doped TiO2/ZnFe2O4 hybrid as an efficient photocatalyst for degradation of aqueous organic pollutants, J. Hazard. Mater. 291 (2015) 28-37.http://dx.doi.org/10.1016/j.jhazmat.2015.02.042 [24] F. Guo, X.L. Huang, Z.H. Chen, Y.X. Shi, H.R. Sun, X.F. Cheng, W.L. Shi, L.Z. Chen, Formation of unique hollow ZnSnO3@ZnIn2S4 core-shell heterojunction to boost visible-light-driven photocatalytic water splitting for hydrogen production, J. Colloid Interface Sci. 602 (2021) 889-897.http://dx.doi.org/10.1016/j.jcis.2021.06.074 [25] M.L. Ma, Y.Y. Yang, W.T. Li, Y. Ma, Z.Y. Tong, W.B. Huang, L. Chen, G.L. Wu, H.L. Wang, P. Lyu, Synthesis of yolk-shell structure Fe3O4/P(MAA-MBAA)-PPy/Au/void/TiO2 magnetic microspheres as visible light active photocatalyst for degradation of organic pollutants, J. Alloys Compd. 810 (2019) 151807.http://dx.doi.org/10.1016/j.jallcom.2019.151807 [26] X.N. Gao, X.Y. Wang, Z. Yang, Y.H. Shen, A.J. Xie, A novel bi-functional SiO2@TiO2/CDs nanocomposite with yolk-shell structure as both efficient SERS substrate and photocatalyst, Appl. Surf. Sci. 475 (2019) 135-142.http://dx.doi.org/10.1016/j.apsusc.2018.12.250 [27] W.N. Wang, C.X. Huang, C.Y. Zhang, M.L. Zhao, J. Zhang, H.J. Chen, Z.B. Zha, T.T. Zhao, H.S. Qian, Controlled synthesis of upconverting nanoparticles/ZnxCd1-xS yolk-shell nanoparticles for efficient photocatalysis driven by NIR light, Appl. Catal. B Environ. 224 (2018) 854-862.http://dx.doi.org/10.1016/j.apcatb.2017.11.037 [28] Z.F. Jiang, C.Z. Zhu, W.M. Wan, K. Qian, J.M. Xie, Constructing graphite-like carbon nitride modified hierarchical yolk-shell TiO2 spheres for water pollution treatment and hydrogen production, J. Mater. Chem. A 4 (5) (2016) 1806-1818.https://doi.org/10.1039/c5ta09919f [29] F. Guo, X.L. Huang, Z.H. Chen, H.R. Sun, W.L. Shi, Investigation of visible-light-driven photocatalytic tetracycline degradation via carbon dots modified porous ZnSnO3 cubes:mechanism and degradation pathway, Sep. Purif. Technol. 253 (2020) 117518.http://dx.doi.org/10.1016/j.seppur.2020.117518 [30] Q. Zhou, W.Y. Huang, C. Xu, X. Liu, K. Yang, D. Li, Y. Hou, D.D. Dionysiou, Novel hierarchical carbon quantum dots-decorated BiOCl nanosheet/carbonized eggshell membrane composites for improved removal of organic contaminants from water via synergistic adsorption and photocatalysis, Chem. Eng. J. 420 (2021) 129582.http://dx.doi.org/10.1016/j.cej.2021.129582 [31] J. Di, J.X. Xia, X.L. Chen, M.X. Ji, S. Yin, Q. Zhang, H.M. Li, Tunable oxygen activation induced by oxygen defects in nitrogen doped carbon quantum dots for sustainable boosting photocatalysis, Carbon 114 (2017) 601-607.http://dx.doi.org/10.1016/j.carbon.2016.12.030 [32] W.L. Shi, F. Guo, M.Y. Li, Y. Shi, M.F. Wu, Y.B. Tang, Enhanced visible-light-driven photocatalytic H2 evolution on the novel nitrogen-doped carbon dots/CuBi2O4 microrods composite, J. Alloys Compd. 775 (2019) 511-517.http://dx.doi.org/10.1016/j.jallcom.2018.10.095 [33] M.Y. Li, C.J. Ma, G.L. Wang, X.F. Zhang, X.L. Dong, H.C. Ma, Controlling the up-conversion photoluminescence property of carbon quantum dots (CQDs) by modifying its surface functional groups for enhanced photocatalytic performance of CQDs/BiVO4 under a broad-spectrum irradiation, Res. Chem. Intermed. 47 (8) (2021) 3469-3485.http://dx.doi.org/10.1007/s11164-021-04459-x [34] S.Q. Huang, Q. Zhang, P.Y. Liu, S.J. Ma, B. Xie, K. Yang, Y.P. Zhao, Novel up-conversion carbon quantum dots/α-FeOOH nanohybrids eliminate tetracycline and its related drug resistance in visible-light responsive Fenton system, Appl. Catal. B Environ. 263 (2020) 118336.http://dx.doi.org/10.1016/j.apcatb.2019.118336 [35] X. Zhang, X.H. Li, C.L. Shao, J.H. Li, M.Y. Zhang, P. Zhang, K.X. Wang, N. Lu, Y.C. Liu, One-dimensional hierarchical heterostructures of In2S3 nanosheets on electrospun TiO2 nanofibers with enhanced visible photocatalytic activity, J. Hazard. Mater. 260 (2013) 892-900.http://dx.doi.org/10.1016/j.jhazmat.2013.06.024 [36] W.L. Shi, F. Guo, M.Y. Li, Y. Shi, Y.B. Tang, N-doped carbon dots/CdS hybrid photocatalyst that responds to visible/near-infrared light irradiation for enhanced photocatalytic hydrogen production, Sep. Purif. Technol. 212 (2019) 142-149.http://dx.doi.org/10.1016/j.seppur.2018.11.028 [37] Z.J. Guan, P. Wang, Q.Y. Li, G.Q. Li, J.J. Yang, Constructing a ZnIn 2 S4 nanoparticle/MoS 2-RGO nanosheet 0D/2D heterojunction for significantly enhanced visible-light photocatalytic H2 production, Dalton Trans. 47 (19) (2018) 6800-6807.https://pubmed.ncbi.nlm.nih.gov/29722778/ [38] J.G. Hou, C. Yang, H.J. Cheng, Z. Wang, S.Q. Jiao, H.M. Zhu, Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production, Phys. Chem. Chem. Phys. 15 (37) (2013) 15660-15668.https://pubmed.ncbi.nlm.nih.gov/23942887/ [39] W.L. Shi, F. Guo, H.B. Wang, M.M. Han, H. Li, S.L. Yuan, H. Huang, Y. Liu, Z.H. Kang, Carbon dots decorated the exposing high-reactive (111) facets CoO octahedrons with enhanced photocatalytic activity and stability for tetracycline degradation under visible light irradiation, Appl. Catal. B Environ. 219 (2017) 36-44.http://dx.doi.org/10.1016/j.apcatb.2017.07.019 [40] W.L. Shi, F. Guo, H.B. Wang, C.G. Liu, Y.J. Fu, S.L. Yuan, H. Huang, Y. Liu, Z.H. Kang, Carbon dots decorated magnetic ZnFe2O4 nanoparticles with enhanced adsorption capacity for the removal of dye from aqueous solution, Appl. Surf. Sci. 433 (2018) 790-797.http://dx.doi.org/10.1016/j.apsusc.2017.10.099 [41] H.K. Zhu, M.H. Fang, Z.H. Huang, Y.G. Liu, K. Chen, C. Tang, M. Wang, L.N. Zhang, X.W. Wu, Novel carbon-incorporated porous ZnFe2O4nanospheres for enhanced photocatalytic hydrogen generation under visible light irradiation, RSC Adv. 6 (61) (2016) 56069-56076.https://doi.org/10.1039/c6ra05098k [42] W. Liu, Y.Y. Li, F.Y. Liu, W. Jiang, D.D. Zhang, J.L. Liang, Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C 3 N4:Mechanisms, degradation pathway and DFT calculation, Water Res. 151 (2019) 8-19.https://pubmed.ncbi.nlm.nih.gov/30579052/ [43] Y.S. Fu, X. Wang, Magnetically separable ZnFe2O4-graphene catalyst and its high photocatalytic performance under visible light irradiation, Ind. Eng. Chem. Res. 50 (12) (2011) 7210-7218.http://dx.doi.org/10.1021/ie200162a [44] W.L. Shi, H.C. Lv, S.L. Yuan, H. Huang, Y. Liu, Z.H. Kang, Near-infrared light photocatalytic ability for degradation of tetracycline using carbon dots modified Ag/AgBr nanocomposites, Sep. Purif. Technol. 174 (2017) 75-83.http://dx.doi.org/10.1016/j.seppur.2016.10.005 [45] Y. Hou, X.Y. Li, Q.D. Zhao, X. Quan, G.H. Chen, Electrochemical method for synthesis of a ZnFe2O4/TiO2 composite nanotube array modified electrode with enhanced photoelectrochemical activity, Adv. Funct. Mater. 20 (13) (2010) 2165-2174.https://doi.org/10.1002/adfm.200902390 [46] Y. Hou, F. Zuo, A. Dagg, P.Y. Feng, A three-dimensional branched cobalt-doped α-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation, Angew. Chem. Int. Ed Engl. 52 (4) (2013) 1248-1252.https://pubmed.ncbi.nlm.nih.gov/23225666/ [47] H. Kong, J. Song, J. Jang, One-step fabrication of magnetic γ-Fe2O3/polyrhodanine nanoparticles using in situ chemical oxidation polymerization and their antibacterial properties, Chem. Commun. 46 (36) (2010) 6735.https://doi.org/10.1039/c0cc00736f [48] P.L. Liang, L.Y. Yuan, H. Deng, X.C. Wang, L. Wang, Z.J. Li, S.Z. Luo, W.Q. Shi, Photocatalytic reduction of uranium(VI) by magnetic ZnFe2O4 under visible light, Appl. Catal. B Environ. 267 (2020) 118688.http://dx.doi.org/10.1016/j.apcatb.2020.118688 [49] H.L. Zhang, C.X. Zhu, G.H. Zhang, M. Li, Q.J. Tang, J.L. Cao, Palladium modified ZnFe2O4/g-C3N4 nanocomposite as an efficiently magnetic recycling photocatalyst, J. Solid State Chem. 288 (2020) 121389.http://dx.doi.org/10.1016/j.jssc.2020.121389 [50] A. Velumani, P. Sengodan, P. Arumugam, R. Rajendran, S. Santhanam, M. Palanisamy, Carbon quantum dots supported ZnO sphere based photocatalyst for dye degradation application, Curr. Appl. Phys. 20 (10) (2020) 1176-1184.http://dx.doi.org/10.1016/j.cap.2020.07.016 [51] H.R. Sun, F. Guo, J.J. Pan, W. Huang, K. Wang, W.L. Shi, One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process, Chem. Eng. J. 406 (2021) 126844.http://dx.doi.org/10.1016/j.cej.2020.126844 [52] F. Guo, H.R. Sun, X.L. Huang, W.L. Shi, C. Yan, Fabrication of TiO 2/high-crystalline g-C 3 N4 composite with enhanced visible-light photocatalytic performance for tetracycline degradation, J. Chem. Technol. Biotechnol. (2020) jctb.6384.https://doi.org/10.1002/jctb.6384 [53] F. Guo, L.J. Wang, H.R. Sun, M.Y. Li, W.L. Shi, High-efficiency photocatalytic water splitting by a N-doped porous g-C3N4 nanosheet polymer photocatalyst derived from urea and N, N-dimethylformamide, Inorg. Chem. Front. 7 (8) (2020) 1770-1779.https://doi.org/10.1039/d0qi00117a [54] F. Guo, H.R. Sun, L. Cheng, W.L. Shi, Oxygen-defective ZnO porous nanosheets modified by carbon dots to improve their visible-light photocatalytic activity and gain mechanistic insight, New J. Chem. 44 (26) (2020) 11215-11223.https://doi.org/10.1039/d0nj02268c [55] W.L. Shi, S. Yang, H.R. Sun, J.B. Wang, X. Lin, F. Guo, J.Y. Shi, Carbon dots anchored high-crystalline g-C3N4 as a metal-free composite photocatalyst for boosted photocatalytic degradation of tetracycline under visible light, J. Mater. Sci. 56 (3) (2021) 2226-2240.http://dx.doi.org/10.1007/s10853-020-05436-2 [56] W.L. Shi, J.B. Wang, S. Yang, X. Lin, F. Guo, J.Y. Shi, Fabrication of a ternary carbon dots/CoO/g-C 3 N4 nanocomposite photocatalyst with enhanced visible-light-driven photocatalytic hydrogen production, J. Chem. Technol. Biotechnol. 95 (8) (2020) 2129-2138.https://doi.org/10.1002/jctb.6398 [57] F. Guo, Z.H. Chen, X.L. Huang, L.W. Cao, X.F. Cheng, W.L. Shi, L.Z. Chen, Cu3P nanoparticles decorated hollow tubular carbon nitride as a superior photocatalyst for photodegradation of tetracycline under visible light, Sep. Purif. Technol. 275 (2021) 119223.http://dx.doi.org/10.1016/j.seppur.2021.119223 [58] Z.H. Chen, F. Guo, H.R. Sun, Y.X. Shi, W.L. Shi, Well-designed three-dimensional hierarchical hollow tubular g-C3N4/ZnIn2S4 nanosheets heterostructure for achieving efficient visible-light photocatalytic hydrogen evolution, J. Colloid Interface Sci. 607 (2022) 1391-1401.http://dx.doi.org/10.1016/j.jcis.2021.09.095 [59] F. Guo, X.L. Huang, Z.H. Chen, H.R. Sun, L.Z. Chen, Prominent co-catalytic effect of CoP nanoparticles anchored on high-crystalline g-C3N4 nanosheets for enhanced visible-light photocatalytic degradation of tetracycline in wastewater, Chem. Eng. J. 395 (2020) 125118.http://dx.doi.org/10.1016/j.cej.2020.125118 [60] W.L. Shi, M.Y. Li, H.J. Ren, F. Guo, X.L. Huang, Y. Shi, Y.B. Tang, Construction of a 0D/1D composite based on Au nanoparticles/CuBi2O4 microrods for efficient visible-light-driven photocatalytic activity, Beilstein J. Nanotechnol. 10 (2019) 1360-1367.https://doi.org/10.3762/bjnano.10.134 [61] S.H. Wang, L. Zhao, W. Huang, H. Zhao, J.Y. Chen, Q. Cai, X. Jiang, C.Y. Lu, W.L. Shi, Solvothermal synthesis of CoO/BiVO4 p-n heterojunction with micro-nano spherical structure for enhanced visible light photocatalytic activity towards degradation of tetracycline, Mater. Res. Bull. 135 (2021) 111161.http://dx.doi.org/10.1016/j.materresbull.2020.111161 [62] F. Guo, X.L. Huang, Z.H. Chen, L.W. Cao, X.F. Cheng, L.Z. Chen, W.L. Shi, Construction of Cu3P-ZnSnO3-g-C3N4 p-n-n heterojunction with multiple built-in electric fields for effectively boosting visible-light photocatalytic degradation of broad-spectrum antibiotics, Sep. Purif. Technol. 265 (2021) 118477.http://dx.doi.org/10.1016/j.seppur.2021.118477 [63] E.L. Liu, X. Lin, Y.Z. Hong, L. Yang, B.F. Luo, W.L. Shi, J.Y. Shi, Rational copolymerization strategy engineered C self-doped g-C3N4 for efficient and robust solar photocatalytic H2 evolution, Renew. Energy 178 (2021) 757-765.http://dx.doi.org/10.1016/j.renene.2021.06.066 [64] F. Guo, L.J. Wang, H.R. Sun, M.Y. Li, W.L. Shi, X. Lin, A one-pot sealed ammonia self-etching strategy to synthesis of N-defective g-C3N4 for enhanced visible-light photocatalytic hydrogen, Int. J. Hydrog. Energy 45 (55) (2020) 30521-30532.http://dx.doi.org/10.1016/j.ijhydene.2020.08.080 [65] X. Tang, Y. Yu, C.C. Ma, G.S. Zhou, X.L. Liu, M.S. Song, Z.Y. Lu, L. Liu, The fabrication of a biomass carbon quantum dot-Bi2WO6 hybrid photocatalyst with high performance for antibiotic degradation, New J. Chem. 43 (47) (2019) 18860-18867.https://doi.org/10.1039/c9nj04764f [66] H. Li, H.B. Wang, J.Q. Guo, S. Ye, W.L. Shi, X. Peng, J. Song, J.L. Qu, Long-wavelength excitation of carbon dots as the probe for real-time imaging of the living-cell cycle process, Sens. Actuat. B Chem. 311 (2020) 127891.http://dx.doi.org/10.1016/j.snb.2020.127891 [67] N. Roy, Y. Shibano, C. Terashima, K.I. Katsumata, K. Nakata, T. Kondo, M. Yuasa, A. Fujishima, Ionic-liquid-assisted selective and controlled electrochemical CO2 reduction at Cu-modified boron-doped diamond electrode, ChemElectroChem 3 (7) (2016) 1044-1047.https://doi.org/10.1002/celc.201600105 [68] G.D. Jiang, K. Geng, Y. Wu, Y.H. Han, X.D. Shen, High photocatalytic performance of ruthenium complexes sensitizing g-C3N4/TiO2 hybrid in visible light irradiation, Appl. Catal. B Environ. 227 (2018) 366-375.http://dx.doi.org/10.1016/j.apcatb.2018.01.034 [69] H. Jin, R.J. Gui, J. Sun, Y.F. Wang, Retraction notice to "Facilely self-assembled magnetic nanoparticles/aptamer/carbon dots nanocomposites for highly sensitive up-conversion fluorescence turn-on detection of tetrodotoxin" Talanta 176 (2018) 277-283, Talanta 204 (2019) 882.http://dx.doi.org/10.1016/j.talanta.2019.06.097 [70] J.J. Pan, F. Guo, H.R. Sun, M.Y. Li, X.F. Zhu, L.L. Gao, W.L. Shi, Nanodiamond decorated 2D hexagonal Fe2O3 nanosheets with a Z-scheme photogenerated electron transfer path for enhanced photocatalytic activity, J. Mater. Sci. 56 (11) (2021) 6663-6675.http://dx.doi.org/10.1007/s10853-020-05700-5 [71] Y. Hu, K. Chen, Y.L. Li, J.Y. He, K.S. Zhang, T. Liu, W. Xu, X.J. Huang, L.T. Kong, J.H. Liu, Morphology-tunable WMoO nanowire catalysts for the extremely efficient elimination of tetracycline:kinetics, mechanisms and intermediates, Nanoscale 11 (3) (2019) 1047-1057.https://pubmed.ncbi.nlm.nih.gov/30569932/ [72] Z.Y. Lu, Z.H. Yu, J.B. Dong, M.S. Song, Y. Liu, X.L. Liu, Z.F. Ma, H. Su, Y.S. Yan, P.W. Huo, Facile microwave synthesis of a Z-scheme imprinted ZnFe2O4/Ag/PEDOT with the specific recognition ability towards improving photocatalytic activity and selectivity for tetracycline, Chem. Eng. J. 337 (2018) 228-241.http://dx.doi.org/10.1016/j.cej.2017.12.115 |
[1] | Jingjing Pan, Haoran Sun, Keyi Chen, Yuhao Zhang, Pengnian Shan, Weilong Shi, Feng Guo. Nanodiamonds decorated yolk-shell ZnFe2O4 sphere as magnetically separable and recyclable composite for boosting antibiotic degradation performance [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 162-172. |
[2] | Duanlian Tang, Xiaoyan Chen, Jiayan Yan, Zhuo Xiong, Xiaoyu Lou, Changshen Ye, Jie Chen, Ting Qiu. Facile one-pot synthesis of a BiOBr/Bi2WO6 heterojunction with enhanced visible-light photocatalytic activity for tetracycline degradation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 222-231. |
[3] | Feng Guo, Chunli Shi, Wei Sun, Yanan Liu, Xue Lin, Weilong Shi. Pomelo biochar as an electron acceptor to modify graphitic carbon nitride for boosting visible-light-driven photocatalytic degradation of tetracycline [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 1-11. |
[4] | Hao Zhou, Qi Yin. Hydrothermal preparation of Nb-doped NaTaO3 with enhanced photocatalytic activity for removal of organic dye [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 142-149. |
[5] | Linlan Wu, Zhengxin Jiao, Suhang Xun, Minqiang He, Lei Fan, Chao Wang, Wenshu Yang, Wenshuai Zhu, Huaming Li. Photocatalytic oxidative of Keggin-type polyoxometalate ionic liquid for enhanced extractive desulfurization in binary deep eutectic solvents [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 205-211. |
[6] | Xiaoqing Yan, Hua An, Zihao Chen, Guidong Yang. Significantly enhanced charge transfer efficiency and surface reaction on NiP2/g-C3N4 heterojunction for photocatalytic hydrogen evolution [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 31-39. |
[7] | Weilong Shi, Yanan Liu, Wei Sun, Yuanzhi Hong, Xiangyu Li, Xue Lin, Feng Guo, Junyou Shi. Improvement of synergistic effect photocatalytic/peroxymonosulfate activation for degradation of amoxicillin using carbon dots anchored on rod-like CoFe2O4 [J]. Chinese Journal of Chemical Engineering, 2022, 52(12): 136-145. |
[8] | Shaojing Zhao, Li Huang, Yong Xie, Bin Wang, Feng Wang, Minhuan Lan. Green synthesis of multifunctional carbon dots for anti-cancer and anti-fungal applications [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 97-104. |
[9] | Mohammed Abdullah Issa, Zurina Zainal Abidin, Shafreeza Sobri, Suraya Abdul-Rashid, Mohd Adzir Mahdi, Nor Azowa Ibrahim, Musa Y. Pudza. Fabrication, characterization and response surface method optimization for quantum efficiency of fluorescent nitrogen-doped carbon dots obtained from carboxymethylcellulose of oil palms empty fruit bunch [J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 584-592. |
[10] | Tao Yang, Fen Liu, Houfeng Xiong, Qiyong Yang, Fushan Chen, Changchao Zhan. Fouling process and anti-fouling mechanisms of dynamic membrane assisted by photocatalytic oxidation under sub-critical fluxes [J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1798-1806. |
[11] | Yangyang Yu, Kejing Wu, Shiyu Lu, Kui Ma, Shan Zhong, Hegui Zhang, Yingming Zhu, Jing Guo, Hairong Yue, Changjun Liu, Siyang Tang, Bin Liang. Engineering an ultrathin amorphous TiO2 layer for boosting the weatherability of TiO2 pigment with high lightening power [J]. Chinese Journal of Chemical Engineering, 2019, 27(11): 2825-2834. |
[12] | Kaixun He, Kai Wang, Yayun Yan. Active training sample selection and updating strategy for near-infrared model with an industrial application [J]. Chinese Journal of Chemical Engineering, 2019, 27(11): 2749-2758. |
[13] | Yongbing Xie, Yingying Chen, Jin Yang, Chenming Liu, He Zhao, Hongbin Cao. Distinct synergetic effects in the ozone enhanced photocatalytic degradation of phenol and oxalic acid with Fe3+/TiO2 catalyst [J]. Chin.J.Chem.Eng., 2018, 26(7): 1528-1535. |
[14] | Abdus Samad, Shamim Ahsan, Ikki Tateishi, Mai Furukawa, Hideyuki Katsumata, Tohru Suzuki, Satoshi Kaneco. Indirect photocatalytic reduction of arsenate to arsenite in aqueous solution with TiO2 in the presence of hole scavengers [J]. Chin.J.Chem.Eng., 2018, 26(3): 529-533. |
[15] | Feng Zhang, Zhilong Xu, Kun Wang, Rizhi Chen, Zhaoxiang Zhong, Weihong Xing. Controllable preparation of ZnO porous flower through a membrane dispersion reactor and their photocatalytic properties [J]. Chin.J.Chem.Eng., 2018, 26(10): 2192-2198. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||