[1] M. Blander, J.L. Katz, Bubble nucleation in liquids, AIChE J. 21 (5) (1975) 833-848.https://doi.org/10.1002/aic.690210502 [2] F. Caupin, Liquid-vapor interface, cavitation, and the phase diagram of water, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71 (5 Pt 1) (2005) 051605.https://pubmed.ncbi.nlm.nih.gov/16089543/ [3] F. Caupin, A. Arvengas, K. Davitt, M.E.M. Azouzi, K.I. Shmulovich, C. Ramboz, D.A. Sessoms, A.D. Stroock, Exploring water and other liquids at negative pressure, J. Phys. Condens. Matter 24 (28) (2012) 284110.https://pubmed.ncbi.nlm.nih.gov/22738888/ [4] E. Herbert, S. Balibar, F. Caupin, Cavitation pressure in water, Phys. Rev. E 74 (4) (2006) 041603.https://doi.org/10.1103/physreve.74.041603 [5] G. Menzl, M.A. Gonzalez, P. Geiger, F. Caupin, J.L.F. Abascal, C. Valeriani, C. Dellago, Molecular mechanism for cavitation in water under tension, Proc. Natl. Acad. Sci. USA 113 (48) (2016) 13582-13587.https://pubmed.ncbi.nlm.nih.gov/27803329/ [6] R. Becker, W. Döring, Kinetische behandlung der keimbildung in übersättigten dämpfen, Ann. Der Physik 416 (8) (1935) 719-752.http://dx.doi.org/10.1002/andp.19354160806 [7] R.C. Tolman, The effect of droplet size on surface tension, J. Chem. Phys. 17 (3) (1949) 333-337.https://doi.org/10.1063/1.1747247 [8] S.D. Lubetkin, Why is it much easier to nucleate gas bubbles than theory predicts? Langmuir 19 (7) (2003) 2575-2587.https://doi.org/10.1021/la0266381 [9] A. Kundt, Ueber den Einfluss des Druckes auf Die Oberflächenspannung an der gemeinschaftlichen Trennungsfläche von Flüssigkeiten und Gasen und über Die Beziehung dieses Einflusses zum Cagniard de la Tour'schen Zustand der Flüssigkeiten, Ann. Phys. 248 (4) (1881) 538-550.https://doi.org/10.1002/andp.18812480405 [10] E.W. Hough, M.J. Rzasa, B.B. Wood, Interfacial tensions at reservoir pressures and temperatures; apparatus and the water-methane system, J. Petroleum Technol. 3 (2) (1951) 57-60.https://doi.org/10.2118/951057-g [11] E.W. Hough, B.B. Wood Jr, M.J. Rzasa, Adsorption at water-helium, -methane and-nitrogen interfaces at pressures to 15, 000 p.s.i.a, J. Phys. Chem. 56 (8) (1952) 996-999.https://doi.org/10.1021/j150500a017 [12] E.J. Slowinski Jr, E.E. Gates, C.E. Waring, The effect of pressure on the surface tensions of liquids, J. Phys. Chem. 61 (6) (1957) 808-810.https://doi.org/10.1021/j150552a028 [13] W.L. Masterton, J. Bianchi, E.J. Slowinski Jr, Surface tension and adsorption in gas-liquid systems at moderate pressures, J. Phys. Chem. 67 (3) (1963) 615-618.https://doi.org/10.1021/j100797a018 [14] C.S. Herrick, G.L. Gaines Jr, Surface tension of saturated anhydrous hydrogen sulfide and the effect of hydrogen sulfide pressure on the surface tension of water, J. Phys. Chem. 77 (22) (1973) 2703-2707.https://doi.org/10.1021/j100640a028 [15] R. Massoudi, A.D. King Jr, Effect of pressure on the surface tension of water. Adsorption of low molecular weight gases on water at 25.deg, J. Phys. Chem. 78 (22) (1974) 2262-2266.https://doi.org/10.1021/j100615a017 [16] R. Massoudi, A.D. King Jr, Effect of pressure on the surface tension of aqueous solutions. Adsorption of hydrocarbon gases, carbon dioxide, and nitrous oxide on aqueous solutions of sodium chloride and tetrabutylammonium bromide at 25.deg, J. Phys. Chem. 79 (16) (1975) 1670-1675.https://doi.org/10.1021/j100583a012 [17] C. Jho, D. Nealon, S. Shogbola, A.D. King Jr, Effect of pressure on the surface tension of water:Adsorption of hydrocarbon gases and carbon dioxide on water at temperatures between 0 and 50℃, J. Colloid Interface Sci. 65 (1) (1978) 141-154.http://dx.doi.org/10.1016/0021-9797(78)90266-7 [18] S.D. Lubetkin, M. Akhtar, The variation of surface tension and contact angle under applied pressure of dissolved gases, and the effects of these changes on the rate of bubble nucleation, J. Colloid Interface Sci. 180 (1) (1996) 43-60.http://dx.doi.org/10.1006/jcis.1996.0272 [19] M. Rao, B.J. Berne, On the location of surface of tension in the planar interface between liquid and vapour, Mol. Phys. 37 (2) (1979) 455-461.https://doi.org/10.1080/00268977900100381 [20] V.E. Vinogradov, P.A. Pavlov, V.G. Baidakov, Explosive cavitation in superheated liquid argon, J Chem Phys 128 (23) (2008) 234508.https://pubmed.ncbi.nlm.nih.gov/18570511/ [21] V.E. Vinogradov, P.A. Pavlov, The boundary of limiting superheats ofn-heptane, ethanol, benzene, and toluene in the region of negative pressures, High Temp. 38 (3) (2000) 379-383.http://dx.doi.org/10.1007/BF02755995 [22] V.G. Baidakov, V.E. Vinogradov, P.A. Pavlov, Limiting tensile strength of liquid nitrogen, Phys. Fluids 28 (5) (2016) 051702.https://doi.org/10.1063/1.4951703 [23] W.L. Jorgensen, J.D. Madura, C.J. Swenson, Optimized intermolecular potential functions for liquid hydrocarbons, J. Am. Chem. Soc. 106 (22) (1984) 6638-6646.https://doi.org/10.1021/ja00334a030 [24] V.K. Michalis, J. Costandy, I.N. Tsimpanogiannis, A.K. Stubos, I.G. Economou, Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology, J Chem Phys 142 (4) (2015) 044501.https://pubmed.ncbi.nlm.nih.gov/25637989/ [25] H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem. 91 (24) (1987) 6269-6271.https://doi.org/10.1021/j100308a038 [26] H.J.C. Berendsen, D. van der Spoel, R. van Drunen, GROMACS:a message-passing parallel molecular dynamics implementation, Comput. Phys. Commun. 91 (1-3) (1995) 43-56.http://dx.doi.org/10.1016/0010-4655(95)00042-E [27] U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103 (19) (1995) 8577-8593.https://doi.org/10.1063/1.470117 [28] B. Hess, H. Bekker, H.J.C. Berendsen, J.G.E.M. Fraaije, LINCS:a linear constraint solver for molecular simulations, J. Comput. Chem. 18 (12) (1997) 1463-1472.http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12%3C1463::AID-JCC4%3E3.0.CO;2-H [29] S. Miyamoto, P.A. Kollman, Settle:an analytical version of the SHAKE and RATTLE algorithm for rigid water models, J. Comput. Chem. 13 (8) (1992) 952-962.http://dx.doi.org/10.1002/jcc.540130805 [30] G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling, J Chem Phys 126 (1) (2007) 014101.https://pubmed.ncbi.nlm.nih.gov/17212484/ [31] M. Parrinello, A. Rahman, Polymorphic transitions in single crystals:a new molecular dynamics method, J. Appl. Phys. 52 (12) (1981) 7182-7190.https://doi.org/10.1063/1.328693 [32] W. Wagner, R. Span, Special equations of state for methane, argon, and nitrogen for the temperature range from 270 to 350 K at pressures up to 30 MPa, Int. J. Thermophys. 14 (4) (1993) 699-725.http://dx.doi.org/10.1007/BF00502103 [33] H.Y. Kwak, S.D. Oh, Gas-vapor bubble nucleation:a unified approach, J Colloid Interface Sci 278 (2) (2004) 436-446.https://pubmed.ncbi.nlm.nih.gov/15450464/ [34] T. R. Rettich, H. Y. Paul, R. Battino, E. Wilhelm, Solubility of gases in liquids. 13. High-precision determination of Henry's constants for methane and ethane in liquid water at 275 to 328 K, J. Phys. Chem. 85 (1981) 3230-3237 [35] H.Y. Kwak, R.L. Panton, Gas bubble formation in nonequilibrium water-gas solutions, J. Chem. Phys. 78 (9) (1983) 5795-5799 |