[1] M.S. Kamal, S.A. Razzak, M.M. Hossain, Catalytic oxidation of volatile organic compounds (VOCs) - A review, Atmos. Environ. 140 (2016) 117–134 [2] Z. Ye, J.M. Giraudon, N. Nuns, P. Simon, N. de Geyter, R. Morent, J.F. Lamonier, Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation, Appl. Catal. B Environ. 223 (2018) 154–166 [3] S. Ojala, S. Pitkäaho, T. Laitinen, N. Niskala Koivikko, R. Brahmi, J. Gaálová, L. Matejova, A. Kucherov, S. Päivärinta, C. Hirschmann, T. Nevanperä, M. Riihimäki, M. Pirilä, R.L. Keiski, Catalysis in VOC abatement, Top. Catal. 54 (16–18) (2011) 1224–1256 [4] S. Scirè, L.F. Liotta, Supported gold catalysts for the total oxidation of volatile organic compounds, Appl. Catal. B Environ. 125 (2012) 222–246 [5] J.P. Du, Z.P. Qu, C. Dong, L.X. Song, Y. Qin, N. Huang, Low-temperature abatement of toluene over Mn-Ce oxides catalysts synthesized by a modified hydrothermal approach, Appl. Surf. Sci. 433 (2018) 1025–1035 [6] W.B. Li, J.X. Wang, H. Gong, Catalytic combustion of VOCs on non-noble metal catalysts, Catal. Today 148 (1–2) (2009) 81–87 [7] M. Piumetti, D. Fino, N. Russo, Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs, Appl. Catal. B Environ. 163 (2015) 277–287 [8] G. Busca, M. Daturi, E. Finocchio, V. Lorenzelli, G. Ramis, R.J. Willey, Transition metal mixed oxides as combustion catalysts: Preparation, characterization and activity mechanisms, Catal. Today 33 (1–3) (1997) 239–249 [9] Q.M. Ren, Z.T. Feng, S.P. Mo, C.L. Huang, S.J. Li, W.X. Zhang, L.M. Chen, M.L. Fu, J.L. Wu, D.Q. Ye, 1D-Co3O4, 2D-Co3O4, 3D-Co3O4 for catalytic oxidation of toluene, Catal. Today 332 (2019) 160–167 [10] Q. Zhang, S.P. Mo, B.X. Chen, W.X. Zhang, C.L. Huang, D.Q. Ye, Hierarchical Co3O4 nanostructures in situ grown on 3D nickel foam towards toluene oxidation, Mol. Catal. 454 (2018) 12–20 [11] W. Liu, R. Liu, H.Y. Zhang, Q. Jin, Z.X. Song, X.J. Zhang, Fabrication of Co3O4 nanospheres and their catalytic performances for toluene oxidation: The distinct effects of morphology and oxygen species, Appl. Catal. A Gen. 597 (2020) 117539 [12] P.H.T. Ngamou, N. Bahlawane, Influence of the arrangement of the octahedrally coordinated trivalent cobalt cations on the electrical charge transport and surface reactivity, Chem. Mater. 22 (14) (2010) 4158–4165 [13] J.H. Zhao, Z.C. Tang, F. Dong, J.Y. Zhang, Controlled porous hollow Co3O4 polyhedral nanocages derived from metal-organic frameworks (MOFs) for toluene catalytic oxidation, Mol. Catal. 463 (2019) 77–86 [14] J. Lei, S. Wang, J.P. Li, Mesoporous Co3O4 derived from facile calcination of octahedral co-MOFs for toluene catalytic oxidation, Ind. Eng. Chem. Res. 59 (13) (2020) 5583–5590 [15] J. Lei, S. Wang, J.P. Li, Mesoporous Co3O4 derived from Co-MOFs with different morphologies and ligands for toluene catalytic oxidation, Chem. Eng. Sci. 220 (2020) 115654 [16] K. Chen, S.L. Bai, H.Y. Li, Y.J. Xue, X.Y. Zhang, M.C. Liu, J.B. Jia, The Co3O4 catalyst derived from ZIF-67 and their catalytic performance of toluene, Appl. Catal. A Gen. 599 (2020) 117614 [17] J. Wang, A. Yoshida, P.F. Wang, T. Yu, Z.D. Wang, X.G. Hao, A. Abudula, G.Q. Guan, Catalytic oxidation of volatile organic compound over cerium modified cobalt-based mixed oxide catalysts synthesized by electrodeposition method, Appl. Catal. B Environ. 271 (2020) 118941 [18] X.J. Zhang, M. Zhao, Z.X. Song, H. Zhao, W. Liu, J.G. Zhao, Z.A. Ma, Y. Xing, The effect of different metal oxides on the catalytic activity of a Co3O4 catalyst for toluene combustion: Importance of the structure–property relationship and surface active species, New J. Chem. 43 (27) (2019) 10868–10877 [19] Y. Wang, D.Y. Yang, S.Z. Li, L.X. Zhang, G.Y. Zheng, L.M. Guo, Layered copper manganese oxide for the efficient catalytic CO and VOCs oxidation, Chem. Eng. J. 357 (2019) 258–268 [20] Y.N. Liao, X. Zhang, R.S. Peng, M.Q. Zhao, D.Q. Ye, Catalytic properties of manganese oxide polyhedra with hollow and solid morphologies in toluene removal, Appl. Surf. Sci. 405 (2017) 20–28 [21] M.T. Nguyen Dinh, C.C. Nguyen, T.L. Truong Vu, V.T. Ho, Q.D. Truong, Tailoring porous structure, reducibility and Mn4+ fraction of ε-MnO2 microcubes for the complete oxidation of toluene, Appl. Catal. A Gen. 595 (2020) 117473 [22] Y. Wang, L.M. Guo, M.Q. Chen, C. Shi, CoMnxOy nanosheets with molecular-scale homogeneity: An excellent catalyst for toluene combustion, Catal. Sci. Technol. 8 (2) (2018) 459–471 [23] Y.J. Luo, Y.B. Zheng, J.C. Zuo, X.S. Feng, X.Y. Wang, T.H. Zhang, K. Zhang, L.L. Jiang, Insights into the high performance of Mn-Co oxides derived from metal-organic frameworks for total toluene oxidation, J. Hazard. Mater. 349 (2018) 119–127 [24] L.H. Song, T.T. Xu, D.W. Gao, X. Hu, C.C. Li, S. Li, G.Z. Chen, Metal–organic framework (MOF)-derived carbon-mediated interfacial reaction for the synthesis of CeO2–MnO 2 catalysts, Chem. Eur. J. 25 (26) (2019) 6621–6627 [25] Q.M. Ren, S.P. Mo, J. Fan, Z.T. Feng, M.Y. Zhang, P.R. Chen, J.J. Gao, M.L. Fu, L.M. Chen, J.L. Wu, D.Q. Ye, Enhancing catalytic toluene oxidation over MnO2@Co3O4 by constructing a coupled interface, Chin. J. Catal. 41 (12) (2020) 1873–1883 [26] W.T. Zhao, Y.Y. Zhang, X.W. Wu, Y.Y. Zhan, X.Y. Wang, C.T. Au, L.L. Jiang, Synthesis of Co-Mn oxides with double-shelled nanocages for low-temperature toluene combustion, Catal. Sci. Technol. 8 (17) (2018) 4494–4502 [27] S. Wang, T.T. Zhao, G.H. Li, L. Wojtas, Q.S. Huo, M. Eddaoudi, Y.L. Liu, From metal-organic squares to porous zeolite-like supramolecular assemblies, J. Am. Chem. Soc. 132 (51) (2010) 18038–18041 [28] F.Y. Hu, J.J. Chen, Y. Peng, H. Song, K.Z. Li, J.H. Li, Novel nanowire self-assembled hierarchical CeO2 microspheres for low temperature toluene catalytic combustion, Chem. Eng. J. 331 (2018) 425–434 [29] X. Chen, X. Chen, S.C. Cai, E.Q. Yu, J. Chen, H.P. Jia, MnOx/Cr2O3 composites prepared by pyrolysis of Cr-MOF precursors containing in situ assembly of MnOx as high stable catalyst for toluene oxidation, Appl. Surf. Sci. 475 (2019) 312–324 [30] X. Chen, X. Chen, S.C. Cai, J. Chen, W.J. Xu, H.P. Jia, J. Chen, Catalytic combustion of toluene over mesoporous Cr2O3-supported platinum catalysts prepared by in situ pyrolysis of MOFs, Chem. Eng. J. 334 (2018) 768–779 [31] L. Oar-Arteta, T. Wezendonk, X.H. Sun, F. Kapteijn, J. Gascon, Metal organic frameworks as precursors for the manufacture of advanced catalytic materials, Mater. Chem. Front. 1 (9) (2017) 1709–1745 [32] D.W. Su, S.X. Dou, G.X. Wang, Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li-O2 batteries, Sci. Rep. 4 (2014) 5767 [33] S.P. Mo, S.D. Li, H.L. Xiao, H. He, Y.D. Xue, M.Y. Zhang, Q.M. Ren, B.X. Chen, Y.F. Chen, D.Q. Ye, Low-temperature CO oxidation over integrated penthorum chinense-like MnCo2O4 arrays anchored on three-dimensional Ni foam with enhanced moisture resistance, Catal. Sci. Technol. 8 (6) (2018) 1663–1676 [34] K. Wang, Y.L. Cao, J.D. Hu, Y.Z. Li, J. Xie, D.Z. Jia, Solvent-free chemical approach to synthesize various morphological Co3 O4 for CO oxidation, ACS Appl. Mater. Interfaces 9 (19) (2017) 16128–16137 [35] S.P. Mo, S.D. Li, Q.M. Ren, M.Y. Zhang, Y.H. Sun, B.F. Wang, Z.T. Feng, Q. Zhang, Y.F. Chen, D.Q. Ye, Vertically-aligned Co3O4 arrays on Ni foam as monolithic structured catalysts for CO oxidation: Effects of morphological transformation, Nanoscale 10 (16) (2018) 7746–7758 [36] Q.M. Ren, S.P. Mo, R.S. Peng, Z.T. Feng, M.Y. Zhang, L.M. Chen, M.L. Fu, J.L. Wu, D.Q. Ye, Controllable synthesis of 3D hierarchical Co3O4 nanocatalysts with various morphologies for the catalytic oxidation of toluene, J. Mater. Chem. A 6 (2) (2018) 498–509 [37] S.P. Mo, Q. Zhang, Q.M. Ren, J.X. Xiong, M.Y. Zhang, Z.T. Feng, D.F. Yan, M.L. Fu, J.L. Wu, L.M. Chen, D.Q. Ye, Leaf-like Co-ZIF-L derivatives embedded on Co2AlO4/Ni foam from hydrotalcites as monolithic catalysts for toluene abatement, J. Hazard. Mater. 364 (2019) 571–580 [38] X.D. Jiang, W.C. Xu, S.F. Lai, X. Chen, Integral structured Co–Mn composite oxides grown on interconnected Ni foam for catalytic toluene oxidation, RSC Adv. 9 (12) (2019) 6533–6541 [39] R.Z. Li, L. Zhang, S.M. Zhu, S.Y. Fu, X.P. Dong, S. Ida, L.X. Zhang, L.M. Guo, Layered δ-MnO2 as an active catalyst for toluene catalytic combustion, Appl. Catal. A Gen. 602 (2020) 117715 [40] X. Zhang, Y.X. Liu, J.G. Deng, X.H. Yu, Z. Han, K.F. Zhang, H.X. Dai, Alloying of gold with palladium: An effective strategy to improve catalytic stability and chlorine-tolerance of the 3DOM CeO2-supported catalysts in trichloroethylene combustion, Appl. Catal. B Environ. 257 (2019) 117879 [41] J.K. Pulleri, S.K. Singh, D. Yearwar, G. Saravanan, A.S. Al-Fatesh, N.K. Labhasetwar, Morphology dependent catalytic activity of Mn3O4 for complete oxidation of toluene and carbon monoxide, Catal. Lett. 151 (1) (2021) 172–183 [42] M.M. Luo, Y. Cheng, X.Z. Peng, W. Pan, Copper modified manganese oxide with tunnel structure as efficient catalyst for low-temperature catalytic combustion of toluene, Chem. Eng. J. 369 (2019) 758–765 [43] X.J. Zhang, J.G. Zhao, Z.X. Song, W. Liu, H. Zhao, M. Zhao, Y. Xing, Z.A. Ma, H.X. Du, The catalytic oxidation performance of toluene over the Ce-Mn-O x catalysts: Effect of synthetic routes, J. Colloid Interface Sci. 562 (2020) 170–181 [44] G.H. Cheng, T.Y. Kou, J. Zhang, C.H. Si, H. Gao, Z.H. Zhang, O22-/O- functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting, Nano Energy 38 (2017) 155–166 [45] S. Zhao, F.Y. Hu, J.H. Li, Hierarchical core-shell Al2O3@Pd-CoAlO microspheres for low-temperature toluene combustion, ACS Catal. 6 (6) (2016) 3433–3441 [46] I. Lopes, N. El Hassan, H. Guerba, G. Wallez, A. Davidson, Size-induced structural modifications affecting Co3O4 nanoparticles patterned in SBA-15 silicas, Chem. Mater. 18 (25) (2006) 5826–5828 [47] Y. Lou, L. Wang, Z.Y. Zhao, Y.H. Zhang, Z.G. Zhang, G.Z. Lu, Y. Guo, Y.L. Guo, Low-temperature CO oxidation over Co3O4-based catalysts: Significant promoting effect of Bi2O3 on Co3O4 catalyst, Appl. Catal. B Environ. 146 (2014) 43–49 [48] J.F. Xu, W. Ji, Z.X. Shen, W.S. Li, S.H. Tang, X.R. Ye, D.Z. Jia, X.Q. Xin, Raman spectra of CuO nanocrystals, J. Raman Spectrosc. 30 (5) (1999) 413–415 [49] X. Chen, X. Chen, E.Q. Yu, S.C. Cai, H.P. Jia, J. Chen, P. Liang, In situ pyrolysis of Ce-MOF to prepare CeO2 catalyst with obviously improved catalytic performance for toluene combustion, Chem. Eng. J. 344 (2018) 469–479 [50] S.H. Xie, J.G. Deng, S.M. Zang, H.G. Yang, G.S. Guo, H. Arandiyan, H.X. Dai, Au-Pd/3DOM Co3O4: Highly active and stable nanocatalysts for toluene oxidation, J. Catal. 322 (2015) 38–48 [51] S.J. Li, R.S. Peng, X.B. Sun, L.M. Chen, M.L. Fu, J.L. Wu, H.W. Huang, D.Q. Ye, Mechanism research of toluene catalytic oxidation over Pt/CeO2 catalyst. Acta Scien. Circum. 38 (2018) 1426-1436 [52] C. Dong, Z.P. Qu, Y. Qin, Q. Fu, H.C. Sun, X.X. Duan, Revealing the highly catalytic performance of spinel CoMn2O4 for toluene oxidation: Involvement and replenishment of oxygen species using in situ designed-TP techniques, ACS Catal. 9 (8) (2019) 6698–6710 |