Chinese Journal of Chemical Engineering ›› 2023, Vol. 53 ›› Issue (1): 317-323.DOI: 10.1016/j.cjche.2022.01.021
Previous Articles Next Articles
Kechang Gao, Shengjuan Shao, Zhixing Li, Jiaxin Jing, Weizhou Jiao, Youzhi Liu
Received:
2021-09-06
Revised:
2022-01-22
Online:
2023-04-08
Published:
2023-01-28
Contact:
Weizhou Jiao,E-mail:zbdxjwz@nuc.edu.cn
Supported by:
Kechang Gao, Shengjuan Shao, Zhixing Li, Jiaxin Jing, Weizhou Jiao, Youzhi Liu
通讯作者:
Weizhou Jiao,E-mail:zbdxjwz@nuc.edu.cn
基金资助:
Kechang Gao, Shengjuan Shao, Zhixing Li, Jiaxin Jing, Weizhou Jiao, Youzhi Liu. Kinetics of the direct reaction between ozone and phenol by high-gravity intensified heterogeneous catalytic ozonation[J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 317-323.
Kechang Gao, Shengjuan Shao, Zhixing Li, Jiaxin Jing, Weizhou Jiao, Youzhi Liu. Kinetics of the direct reaction between ozone and phenol by high-gravity intensified heterogeneous catalytic ozonation[J]. 中国化学工程学报, 2023, 53(1): 317-323.
[1] D.M. Naguib, N.M. Badawy, Phenol removal from wastewater using waste products, J. Environ. Chem. Eng. 8 (2019) 103592. [2] S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments, Desalination. 261 (2010) 3-18. [3] E. El-Ashtoukhy, Y.A. El-Taweel, O. Abdelwahab, E.M. Nassef, Treatment of petrochemical wastewater containing phenolic compounds by electrocoagulation using a fixed bed electrochemical reactor, Int. J. Electrochem. Sci. 8 (2013) 1534-1550. [4] A.S. Fajardo, R.C. Martins, R.M. Quinta-Ferreira, Treatment of a simulated phenolic effluent by heterogeneous catalytic ozonation using Pt/Al2O3, Environ. Technol. 34 (2013) 301-311. [5] Z.Q. Zeng, H.K. Zou, L. Xin, B.C. Sun, J.F. Chen, L. Shao, Ozonation of phenol with O3/Fe (II) in acidic environment in a rotating packed bed, Ind. Eng. Chem. Res. 51 (2012) 10509-10516. [6] H. Barndök, L. Cortijo, D. Hermosilla, C. Negro, Á. Blanco, Removal of 1,4-dioxane from industrial wastewaters: routes of decomposition under different operational conditions to determine the ozone oxidation capacity, J. Hazard. Mater. 280 (2014) 340-347. [7] T. Ueda, M. Hara, I. Odagawa, T. Shigihara, Simultaneous treatment of washing, disinfection and sterilization using ultrasonic levitation, silver electrolysis and ozone oxidation, Biocontrol. Sci. 14 (2009) 1. [8] F.X. Deng, S. Qiu, C. Chen, X. Ding, F. Ma, Heterogeneous catalytic ozonation of refinery wastewater over alumina-supported Mn and Cu oxides catalyst, Ozone: Sci. Eng. 37 (2015) 546-555. [9] S.J. Shao, D. Lei, Y. Song, L.N. Liang, Y.Z. Liu, W. Z. Jiao, Cu-MnOX/gamma-Al2O3 catalyzed ozonation of nitrobenzene in a high-gravity rotating packed bed, Ind. Eng. Chem. Res. 60 (2021) 2123-2135. [10] J. Valand, S. Maddila, H.B. Friedrich, S.B. Jonnalagadda, Heterogeneous catalyzed ozonation using Cu-Ni-Co oxides for degradation of dichlorophenol, Ozone: Sci. Eng. 38 (2016) 14-24. [11] X.F. Li, W.Y. Chen, L.M. Ma, H.W. Wang, J.H. Fan, Industrial wastewater advanced treatment via catalytic ozonation with an Fe-based catalyst, Chemosphere. 195 (2018) 336-343. [12] H.D. Qin, Q.Z. Dong, H.L. Chen, G. Yang, X.M. Zhang, Kinetics and mechanism of humic acids degradation by ozone in the presence of CeO2/AC, Ozone: Sci. Eng. 37 (2015) 371-378. [13] L. Zhao, W.C. Ma, J. Ma, G. Wen, Q.L. Liu, Relationship between acceleration of hydroxyl radical initiation and increase of multiple-ultrasonic field amount in the process of ultrasound catalytic ozonation for degradation of nitrobenzene in aqueous solution, Ultrason. Sonochem. 22 (2015) 198-204. [14] Y. Ku, Y.J. Huang, H.W. Chen, W.M. Hou, Decomposition of acetone by hydrogen peroxide/ozone process in a rotating packed contactor, Water Environ. Res. 83 (2011) 588-593. [15] W.Z. Jiao, S. Luo, Z. He, Y.Z. Liu, Applications of high gravity technologies for wastewater treatment: A review, Chem. Eng. J. 313 (2017) 912-927. [16] W.Z. Jiao, X.Y. Wei, S.J. Shao, Y.Z. Liu, Catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-Mn-Cu/γ-Al2O3 in a rotating packed bed, Chin. J. Chem. Eng. 2021. [17] D. Wang, T.R. Liu, L. Ma, F. Wang, L. Shao, Modeling and experimental studies on ozone absorption into phenolic solution in a rotating packed bed, Ind. Eng. Chem. Res. 58 (2019) 7052-7062. [18] W.Z. Jiao, Y.J. Qin, Y.H. Wang, L. Guo, Y.Z. Liu, Enhancement performance of ozone mass transfer by high gravity technology, Desalin. Water Treat. 66 (2017) 195-202. [19] X.Y. Wei, S.J. Shao, X. Ding, W.Z. Jiao, Y.Z. Liu, Degradation of phenol with heterogeneous catalytic ozonation enhanced by high gravity technology, J. Cleaner Prod. 248 (2020) 119179. [20] Z.Q. Zeng, J.F. Wang, Z.H. Li, B.C. Sun, L. Shao, W.J. Li, J.F. Chen, H.K. Zou, The advanced oxidation process of phenol solution by O3/H2O2 in a rotating packed bed, Ozone: Sci. Eng. 35 (2013) 101-108. [21] Z.Q. Zeng, H.K. Zou, X. Li, M. Arowo, B.C. Sun, J.F. Chen, G.W. Chu, L. Shao, Degradation of phenol by ozone in the presence of Fenton reagent in a rotating packed bed, Chem. Eng. J. 229 (2013) 404-411. [22] Y. Luo, G.W. Chu, H.K. Zou, Z.Q. Zhao, M. Dudukovic, Gas-liquid effective interfacial area in a rotating packed bed, Ind. Eng. Chem. Res. 51 (2012) 16320-16325. [23] S.G. Zhang, Y.J. Qin, D.M. Zhang, W.Z. Jiao, L. Guo, Y.Z. Liu, Effects of coexisting substances on nitrobenzene degradation with O3/H2O2 process in high-gravity fields, China Pet. Process. Petrochem. Technol. 18 (2016) 32-40. [24] G. Teixeira, A. Cruz, G. Samanamud, A. França, L. Naves, D. Melo, D. Morais, E. Baston, F. Naves, The use of nanovermiculite catalyst in the study of removal of the organic load and degradation of atrazine via ozone process in RPB reactor, J. Environ. Sci. Health, Part B. 55 (2020) 19-29. [25] W.Z. Jiao, P.Z. Yang, W.Q. Gao, J.J. Qiao, Y.Z. Liu, Apparent kinetics of the ozone oxidation of nitrobenzene in aqueous solution enhanced by high gravity technology, Chem. Eng. Process. 146 (2019) 107690. [26] B. Philip, Errata-the reaction of ozone with organic compounds, Chem. Rev. 59 (1959) 179-180. [27] J. Hoigné, H. Bader, Rate constants of reactions of ozone with organic and inorganic compounds in water-Ⅰ: non-dissociating organic compounds, Water. Res. 17 (1983) 173-183. [28] J. Hoigné, H. Bader, Rate constants of reactions of ozone with organic and inorganic compounds in water-Ⅱ: inorganic compounds and radicals, Water. Res. 19 (1985) 993-1004. [29] P.Z. Yang, S. Luo, H.Y. Liu, W.Z. Jiao, Y.Z. Liu, Aqueous ozone decomposition kinetics in a rotating packed bed, J. Taiwan. Inst. Chem. Eng. 96 (2019) 11-17. [30] F.J. Beltrán, J.F. García-Araya, B. Acedo, Advanced oxidation of atrazine in water-Ⅰ. Ozonation, Water. Res. 28 (1994) 2153-2164. [31] P.J. Skrdla, V. Antonucci, C. Lindemann, Tautomer interconversion of 2,4-pentanedione during gas chromatography on an oxidized cyano-modified capillary column, J. Chromatogr. Sci. 39 (2001) 431-440. [32] M.D. Gurol, P.C. Singer, Kinetics of ozone decomposition: a dynamic approach, Environ. Sci. Technol. 16 (1982) 377-383. [33] L. Zhao, J. Ma, Z.Z. Sun, H.L. Liu, Mechanism of heterogeneous catalytic ozonation of nitro-benzene in aqueous solution with modified ceramic honeycomb, Appl. Catal, B. 89 (2009) 326-334. [34] Y. Jung, E. Hong, M. Kwon, J.W. Kang, A kinetic study of ozone decay and bromine formation in saltwater ozonation: effect of O3 dosage, salinity, pH, and temperature, Chem. Eng. J. 312 (2017) 30-38. [35] C.C. Chang, C.Y. Chiu, C.Y. Chang, C.F. Chang, Y.H. Chen, D.R. Ji, J.Y. Tseng, Y.H. Yu, Pt-catalyzed ozonation of aqueous phenol solution using high-gravity rotating packed bed, J. Hazard. Mater. 168 (2009) 649-655. [36] M.G. El-Din, D.W. Smith, F.A. Momani, W.X. Wang, Oxidation of resin and fatty acids by ozone: Kinetics and toxicity study, Water. Res. 40 (2006) 392-400. [37] F.J. Beltrán, Ozone reaction kinetics for water and wastewater system, Florida: Crc Press. 2004. [38] C.C. Lin, C.Y. Chao, M.Y. Liu, Removal of ozone from air by absorption in a rotating packed bed, J. Ind. Eng. Chem. 16 (2010) 140-146. [39] S.J. Shao, W.Z. Jiao, Y.Z. Liu, Research progress of high gravity enhanced ozone-based advanced oxidation technology, Chem. Ind. Eng. Prog. 39 (2020) 4798-4811. [40] Y. Liu, Y. Luo, G.W. Chu, F. Larachi, H.K. Zou, J.F. Chen, Liquid microflow inside the packing of a rotating packed bed reactor: Computational, observational and experimental studies, Chem. Eng. J. 386 (2020) 121134. [41] W.Z. Jiao, Y.Z. Liu, W.L. Liu, J. Li, F. Shao, C.R. Wang, Degradation of wastewater containing nitrobenzene with O3 and H2O2 by high gravity technology, China Pet. Process. Petrochem. Technol. 15 (2013) 85-94. [42] C.C. Lin, B.C. Chen, Y.S. Chen, S.K. Hsu, Feasibility of a cross-flow rotating packed bed in removing carbon dioxide from gaseous streams, Sep. Purif. Technol. 62 (2008) 507-512. [43] A. Aghaeinejad-Meybodi, A. Ebadi, S. Shafiei, A. Khataeec, A.D. Kiadehid, Degradation of fluoxetine using catalytic ozonation in aqueous media in the presence of nano-γ-alumina catalyst: Experimental, modeling and optimization study, Sep. Purif. Technol. 211 (2019) 551-563. [44] J. Wang, X. Quan, S. Chen, H.T. Yu, G.B. Liu, Enhanced catalytic ozonation by highly dispersed CeO2 on carbon nanotubes for mineralization of organic pollutants, J. Hazard. Mater. 368 (2019) 621-629. |
[1] | Chuang Liang, Zhihao Liu, Baochang Sun, Haikui Zou, Guangwen Chu. Improvement in discharge characteristics and energy yield of ozone generation via configuration optimization of a coaxial dielectric barrier discharge reactor [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 61-68. |
[2] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 193-199. |
[3] | Masoumeh Sheikh Hosseini Lori, Mohammad Delnavaz, Hoda Khoshvaght. Synthesizing and characterizing the magnetic EDTA/chitosan/CeZnO nanocomposite for simultaneous treating of chromium and phenol in an aqueous solution [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 76-88. |
[4] | Chaobo Zhang, Xiaoyong Yang, Jian Dai, Wenxia Liu, Hang Yang, Zhishan Bai. Efficient extraction of phenol from wastewater by ionic micro-emulsion method: Anionic and cationic [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 137-145. |
[5] | Bin Gao, Junwen Chen, Qi Zuo, Hongyan Wang, Wenlin Li. The critical role of Zr in controlling the activity of Pd/Beta on the hydrogenation of phenol to cyclohexanone [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 79-87. |
[6] | Jian Tian, Gen Li, Wang He, Kok Bing Tan, Daohua Sun, Junfu Wei, Qingbiao Li. Insight into the dynamic adsorption behavior of graphene oxide multichannel architecture toward contaminants [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 124-132. |
[7] | Lijian Shi, Yaping Zhang, Yujia Tong, Wenlong Ding, Weixing Li. Plant-inspired biomimetic hybrid PVDF membrane co-deposited by tea polyphenols and 3-amino-propyl-triethoxysilane for high-efficiency oil-in-water emulsion separation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 170-180. |
[8] | Lu Lv, Min Zhao, Yanan Liu, Yufei He, Dianqing Li. Fabrication of hydrophobic Pd/Al2O3-phosphoric acid via P-O-Al bond for liquid hydrogenation reaction [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 232-242. |
[9] | Xinyu Lu, Dandan Wang, Haoquan Guo, Pengcheng Xiu, Jiajia Chen, Yu Qin, Hossain Mahmud Robin, Chaozhong Xu, Xingguang Zhang, Xiaoli Gu. Insights into depolymerization pathways and mechanism of alkali lignin over a Ni1.2–ZrO2/WO3/γ-Al2O3 catalyst [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 191-201. |
[10] | Weizhou Jiao, Xingyue Wei, Shengjuan Shao, Youzhi Liu. Catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-Mn-Cu/γ-Al2O3 in a rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 133-142. |
[11] | Chunhua Zhang, Zhengyan Qu, Hong Jiang, Rizhi Chen, Weihong Xing. Nb2O5 promoted Pd/AC catalyst for selective phenol hydrogenation to cyclohexanone [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 87-93. |
[12] | Zhen Lu, Jie He, Bogeng Guo, Yulai Zhao, Jingyu Cai, Longqiang Xiao, Linxi Hou. Efficient homogenous catalysis of CO2 to generate cyclic carbonates by heterogenous and recyclable polypyrazoles [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 110-115. |
[13] | Mohamed A. Almaradhi, Hassan M.A. Hassan, Mosaed S. Alhumaimess. Fe3O4-carbon spheres core–shell supported palladium nanoparticles: A robust and recyclable catalyst for suzuki coupling reaction [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 75-85. |
[14] | Guoxiao Cai, Wei Xiong, Susu Zhou, Pingle Liu, Yang Lv, Fang Hao, Hean Luo, ChangYi Kong. A multi-functional Ru Mo bimetallic catalyst for ultra-efficient C3 alcohols production from liquid phase hydrogenolysis of glycerol [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 199-215. |
[15] | Wei-Qi Yan, Yi-An Zhu, Xing-Gui Zhou, Wei-Kang Yuan. Rational design of heterogeneous catalysts by breaking and rebuilding scaling relations [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 22-28. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 50
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 178
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||