Chinese Journal of Chemical Engineering ›› 2023, Vol. 56 ›› Issue (4): 25-32.DOI: 10.1016/j.cjche.2022.08.023
Previous Articles Next Articles
Shujun Peng1, Song Lei2, Sisi Wen2, Jian Xue2, Haihui Wang3
Received:
2022-05-18
Revised:
2022-08-06
Online:
2023-06-13
Published:
2023-04-28
Contact:
Jian Xue,E-mail:xuejian@scut.edu.cn
Supported by:
Shujun Peng1, Song Lei2, Sisi Wen2, Jian Xue2, Haihui Wang3
通讯作者:
Jian Xue,E-mail:xuejian@scut.edu.cn
基金资助:
Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures[J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 25-32.
Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures[J]. 中国化学工程学报, 2023, 56(4): 25-32.
[1] C.Y. Ai, T.T. Li, R.Z. Ren, Z.H. Wang, W. Sun, J.S. Feng, K.N. Sun, J.S. Qiao, Barium-doped Pr2Ni0.6Cu0.4O4+δ with triple conducting characteristics as cathode for intermediate temperature proton conducting solid oxide fuel cell, Chin. J. Chem. Eng. 39 (2021) 269-276. [2] C.C. Duan, J.H. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, A. Almansoori, R. O’Hayre. Readily processed protonic ceramic fuel cells with high performance at low temperatures, Science 349 (6254) (2015) 1321-1326. [3] Y. Zhang, B. Chen, D. Guan, M. Xu, R. Ran, M. Ni, W. Zhou, R. O’Hayre, Z. Shao, Thermal-expansion offset for high-performance fuel cell cathodes, Nature 591 (2021) 246-251. [4] G. Kobayashi, Y. Hinuma, S. Matsuoka, A. Watanabe, M. Iqbal, M. Hirayama, M. Yonemura, T. Kamiyama, I. Tanaka, R. Kanno, Pure H- conduction in oxyhydrides, Science 351 (6279) (2016) 1314-1317. [5] L. Yang, S.Z. Wang, K. Blinn, M.F. Liu, Z. Liu, Z. Cheng, M.L. Liu, Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3-δ, Science 326 (5949) (2009) 126-129. [6] J.-H. Myung, D. Neagu, D.N. Miller, J.T. Irvine, Switching on electrocatalytic activity in solid oxide cells, Nature 537 (2016) 528-531. [7] M. Ni, Z.P. Shao, Fuel cells that operate at 300° to 500 ℃, Science 369 (6500) (2020) 138-139. [8] J.X. Peng, J. Huang, X.-L. Wu, Y.-W. Xu, H.C. Chen, X. Li, Solid oxide fuel cell (SOFC) performance evaluation, fault diagnosis and health control: A review, J. Power Sources 505 (2021) 230058. [9] H.G. Shi, Q.J. Li, W.Y. Tan, H. Qiu, C. Su, Solid oxide fuel cells in combination with biomass gasification for electric power generation, Chin. J. Chem. Eng. 28 (4) (2020) 1156-1161. [10] L.J. Tan, C. Yang, N.N. Zhou, Synthesis/design optimization of SOFC-PEM hybrid system under uncertainty, Chin. J. Chem. Eng. 23 (1) (2015) 128-137. [11] X.L. Liu, F.J. Jin, X.W. Liu, N. Sun, J.X. Li, Y. Shen, F. Wang, L. Yang, X.Y. Chu, M.Z. Xu, Y.J. Zhai, J.H. Li, Effect of calcium doping on Sm1–xCaxBaCo2O5+δ cathode materials for intermediate-temperature solid oxide fuel cells, Electrochim. Acta 390 (2021) 138830. [12] Z.H. Du, K.Y. Li, H.L. Zhao, X. Dong, Y. Zhang, K. Świerczek, A SmBaCo2O5+δ double perovskite with epitaxially grown Sm0.2Ce0.8O2-δ nanoparticles as a promising cathode for solid oxide fuel cells, J. Mater. Chem. A 8 (2020) 14162-14170. [13] W. Zhou, R. Ran, Z.P. Shao, Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3–δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review, J. Power Sources 192 (2) (2009) 231-246. [14] H.Q. Xie, Y.Y. Wei, H.H. Wang, Modeling of U-shaped Ba0.5Sr0.5Co0.8Fe0.2O3-δ hollow-fiber membrane for oxygen permeation, Chin. J. Chem. Eng. 25 (7) (2017) 892-897. [15] A.M. Asensio, D. Clematis, M. Viviani, M.P. Carpanese, S. Presto, D. Cademartori, P.L. Cabot, A. Barbucci, Impregnation of microporous SDC scaffold as stable solid oxide cell BSCF-based air electrode, Energy 237 (2021) 121514. [16] M. Shah, S.A. Barnett, Solid oxide fuel cell cathodes by infiltration of La0.6Sr0.4Co0.2Fe0.8O3–δ into Gd-Doped Ceria, Solid State Ion. 179 (35-36) (2008) 2059-2064. [17] A. Esquirol, N.P. Brandon, J.A. Kilner, M. Mogensen, Electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8O3 cathodes for intermediate-temperature SOFCs, J. Electrochem. Soc. 151 (11) (2004) A1847-A1855. [18] J. Song, C. Li, S. Zhang, X.X. Meng, B. Meng, J. Sunarso, Catalyst-modified perovskite hollow fiber membrane for oxidative coupling of methane, Chin. J. Chem. Eng. 41 (2022) 412-419. [19] A.Y. Yan, M.J. Cheng, Y.L. Dong, W.S. Yang, V. Maragou, S.Q. Song, P. Tsiakaras, Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3–δ based cathode IT-SOFC I. The effect of CO2 on the cell performance, Appl. Catal. B-Environ. 66 (1-2) (2006) 64-71. [20] A.Y. Yan, V. Maragou, A. Arico, M.J. Cheng, P. Tsiakaras, Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3–δ based cathode SOFC II. The effect of CO2 on the chemical stability, Appl. Catal. B-Environ. 76 (3-4) (2007) 320-327. [21] A.Y. Yan, M. Yang, Z.F. Hou, Y.L. Dong, M.J. Cheng, Investigation of Ba1–xSrxCo0.8Fe0.2O3–δ as cathodes for low-temperature solid oxide fuel cells both in the absence and presence of CO2, J. Power Sources 185 (1) (2008) 76-84. [22] J.X. Yi, M. Schroeder, T. Weirich, J. Mayer, Behavior of Ba(Co, Fe, Nb)O3–δ perovskite in CO2-containing atmospheres: degradation mechanism and materials design, Chem. Mater. 22 (23) (2010) 6246-6253. [23] Y.Q. Meng, L. Sun, J. Gao, W.Z. Tan, C.S. Chen, J.X. Yi, H.J.M. Bouwmeester, Z.H. Sun, K.S. Brinkman, Insights into the CO2 Stability-performance trade-off of antimony-doped SrFeO3–δ perovskite cathode for solid oxide fuel cells, ACS Appl. Mater. Interfaces 11 (12) (2019) 11498-11506. [24] J.L. Wang, Z.B. Yang, L.M. Ba, Y. Chen, B. Ge, S.P. Peng, Effects of CO2 and H2O on Ba0.9Co0.7Fe0.2Nb0.1O3–δ cathode and modification by a Ce0.9Gd0.1O2-δ coating, J. Electroanal. Chem. 827 (2018) 79-84. [25] B.B. Gu, J. Sunarso, Y. Zhang, Y.F. Song, G.M. Yang, W. Zhou, Z.P. Shao, A high performance composite cathode with enhanced CO2 resistance for low and intermediate-temperature solid oxide fuel cells, J. Power Sources 405 (2018) 124-131. [26] Y.J. Gou, G.D. Li, R.Z. Ren, C.M. Xu, J.S. Qiao, W. Sun, K.N. Sun, Z.H. Wang, Pr-doping motivating the phase transformation of the BaFeO3–δ perovskite as a high-performance solid oxide fuel cell cathode, ACS Appl. Mater. Interfaces 13 (17) (2021) 20174-20184. [27] D.M. Huan, L. Zhang, K. Zhu, X.Y. Li, B.Z. Zhang, J.L. Shi, R.R. Peng, C.R. Xia, Tailoring the structural stability, electrochemical performance and CO2 tolerance of aluminum doped SrFeO3, Sep. Purif. Technol. 290 (2022) 120843. [28] J. Xue, Q. Liao, W. Chen, H.J.M. Bouwmeester, H.H. Wang, A. Feldhoff, A new CO2-resistant Ruddlesden–Popper oxide with superior oxygen transport: A-site deficient (Pr0.9La0.1)1.9(Ni0.74Cu0.21Ga0.05)O4+δ, J. Mater. Chem. A 3 (2015) 19107-19114. [29] J. Xue, J.Q. Li, L.B. Zhuang, L. Chen, A. Feldhoff, H.H. Wang, Anion doping CO2-stable oxygen permeable membranes for syngas Production, Chem. Eng. J. 347 (2018) 84-90. [30] E. Pikalova, A. Kolchugin, K. Zakharchuk, D. Boiba, V. Tsvinkinberg, E. Filonova, A. Khrustov, A. Yaremchenko, Mixed ionic-electronic conductivity, phase stability and electrochemical activity of Gd-substituted La2NiO4+δ as oxygen electrode material for solid oxide fuel/electrolysis cells, Int. J. Hydrog. Energy 46 (32) (2021) 16932-16946. [31] R. Dutta, A. Maity, A. Marsicano, M. Ceretti, D. Chernyshov, A. Bosak, A. Villesuzanne, G. Roth, G. Perversika, W. Paulus, Long-range oxygen ordering linked to topotactic oxygen release in Pr2NiO4+δ fuel cell cathode material, J. Mater. Chem. A 8 (2020) 13987-13995. [32] J.Q. Li, S. Lei, B.X. Deng, J. Xue, Y.J. Wang, H.H. Wang, Reducing anisotropic effects on oxygen separation performance of K2NiF4-type membranes by adjusting grain size, J. Membr. Sci. 618 (2021) 118628. [33] J. Xue, A. Feldhoff, Ambient air partial internal reduction of NiO in a mixed ionic-electronic conducting ceramic, J. Eur. Ceram. Soc. 36 (14) (2016) 3451-3456. [34] C.G. Yao, J.X. Yang, H.X. Zhang , S.G. Chen, J. Meng, K.D. Cai, Evaluation of bismuth doped La2-xBixNiO4+δ (x = 0, 0.02 and 0.04) as cathode materials for solid oxide fuel cells, Ceram. Int. 47 (17) (2021) 24589-24596. [35] R. Sayers, J. Liu, B. Rustumji, S.J. Skinner, Novel K2NiF4-type materials for solid oxide fuel cells: compatibility with electrolytes in the intermediate temperature range, Fuel Cells 8 (5) (2008) 338-343. [36] J. Xue, A. Schulz, H.H. Wang, A. Feldhoff, The phase stability of the Ruddlesden-Popper type oxide (Pr0.9La0.1)2.0Ni0.74Cu0.21Ga0.05O4+δ in an oxidizing environment, J. Membr. Sci. 497 (2016) 357-364. [37] Y.Y. Wei, Q. Liao, Z. Li, H.H. Wang, Enhancement of oxygen permeation through U-shaped K2NiF4-type oxide hollow fiber membranes by surface modifications, Sep. Purif. Technol. 110 (2013) 74-80. [38] D. Cetin, S. Poizeau, J. Pietras, S. Gopalan, Decomposition of La2NiO4 in Sm0.2Ce0.8O2-La2NiO4 composites for solid oxide fuel cell applications, Solid State Ion. 300 (2017) 91-96. [39] S.J. Zhao, N. Li, L.P. Sun, Q. Li, L.H. Huo, H. Zhao, A novel high-entropy cathode with the A2BO4-type structure for solid oxide fuel cells, J. Alloys Compd. 895 (1) (2022) 162548. [40] Y. Chen, Q. Liao, Y.Y. Wei, Z. Li, H.H. Wang, A CO2-stable K2NiF4-type oxide (Nd0.9La0.1)2(Ni0.74Cu0.21Al0.05)O4+δ for oxygen separation, Ind. Eng. Chem. Res. 52 (25) (2013) 8571-8578. [41] J. Banner, A. Akter, R.F. Wang, J. Pietras, S. Sulekar, O.A. Marina, S. Gopalan, Rare earth nickelate electrodes containing heavily doped ceria for reversible solid oxide fuel cells, J. Power Sources 507 (2021) 230248. [42] C.N. Munnings, S.J. Skinner, G. Amow, P.S. Whitfield, I.J. Davidson, Oxygen transport in the La2Ni1–xCoxO4+δ system, Solid State Ion. 176 (23-24) (2005) 1895-1901. [43] S.J. Peng, Y.Y. Wei, J. Xue, Y. Chen, H.H. Wang, Pr1.8La0.2Ni0.74Cu0.21Ga0.05O4+δ as a potential cathode material with CO2 resistance for intermediate temperature solid oxide fuel cell, Int. J. Hydrog. Energy 38 (25) (2013) 10552-10558. [44] Q. Zheng, J. Xue, Q. Liao, Y.Y. Wei, Z. Li, H.H. Wang, CO2-tolerant alkaline-earth metal-free single phase membrane for oxygen separation, Chem. Eng. Sci. 101 (2013) 240-247. [45] V.A. Sadykov, E.Y. Pikalova, A.A. Kolchugin, A.V. Fetisov, E.M. Sadovskaya, E.A. Filonova, N.F. Eremeev, V.B. Goncharov, A.V. Krasnov, P.I. Skriabin, A.N. Shmakov, Z.S. Vinokurov, A.V. Ishchenko, S.M. Pikalov, Transport properties of Ca-doped Ln2NiO4 for intermediate temperature solid oxide fuel cells cathodes and catalytic membranes for hydrogen production, Int. J. Hydrog. Energy 45 (25) (2020) 13625-13642. [46] Y. Chen, H. Liu, L.B. Zhuang, Y.Y. Wei, H.H. Wang, Hydrogen permeability through Nd5.5W0.35Mo0.5Nb0.15O11.25-δ mixed protonic-electronic conducting membrane, J. Membr. Sci. 579 (2019) 33-39. [47] J. Xue, G.W. Weng, L. Chen, Y.P. Suo, Y.Y. Wei, A. Feldhoff, H.H. Wang, Various influence of surface modification on permeability and phase stability through an oxygen permeable membrane, J. Membr. Sci. 573 (2019) 588-594. [48] Z.L. Zhan, S.A. Barnett, An octane-fueled solid oxide fuel cell, Science 308 (5723) (2005) 844-847. [49] N. Jaiswal, K. Tanwar, R. Suman, D. Kumar, S. Upadhyay, O. Parkash, A brief review on ceria based solid electrolytes for solid oxide fuel cells, J. Alloys Compd. 781 (2019) 984-1005. [50] D.X. Zhou, S.J. Peng, Y.Y. Wei, Z. Li, H.H. Wang, Novel asymmetric anode-supported hollow fiber solid oxide fuel cell, J. Alloys Compd. 523 (2012) 134-138. [51] S.J. Peng, D.X. Zhou, Y.Y. Wei, Z. Li, H.H. Wang, A novel U-shaped anode-supported hollow fiber solid oxide fuel cell with considerable thermal cycling performance and stability, J. Membr. Sci. 417-418 (2012) 80-86. [52] J.W. Fergus, Electrolytes for solid oxide fuel cells, J. Power Sources 162 (1) (2006) 30-40. [53] D. Beckel, A. Bieberle-Hütter, A. Harvey, A. Infortuna, U.P. Muecke, M. Prestat, J.L.M. Rupp, L.J. Gauckler, Thin films for micro solid oxide fuel cells, J. Power Sources 173 (1) (2007) 325-345. [54] J.Y. Koo, T. Mun, J. Lee, M. Choi, S.J. Kim, W. Lee, Enhancement of oxygen reduction reaction kinetics using infiltrated yttria-stabilized zirconia interlayers at the electrolyte/electrode interfaces of solid oxide fuel cells, J. Power Sources 472 (2020) 228606. [55] J.Y. Ma, Y.X. Pan, Y.K. Wang, Y. Chen, A Sr and Ni doped Ruddlesden-Popper perovskite oxide La1.6Sr0.4Cu0.6Ni0.4O4+δ as a promising cathode for protonic ceramic fuel cells, J. Power Sources 509 (2021) 230369. [56] F.F. Lu, T. Xia, Q. Li, L.P. Sun, L.H. Huo, H. Zhao, Ta-doped PrBa0.94CO2-xTaxO5+δ as promising oxygen electrodes: A focused study on catalytic oxygen reduction reaction activity, stability and CO2-durability, J. Power Sources 417 (2019) 42-52. [57] M. Yashima, N. Sirikanda, T. Ishihara. Crystal structure, diffusion path, and oxygen permeability of a Pr2NiO4-based mixed conductor (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ, J. Am. Chem. Soc. 132 (7) (2010) 2385-2392. [58] A. Giuliano, C. Nicollet, S. Fourcade, F. Mauvy, M.P. Carpanese, J.-C. Grenier, Influence of the electrode/electrolyte interface structure on the performance of Pr0.8Sr0.2Fe0.7Ni0.3O3-δ as solid oxide fuel cell cathode, Electrochim. Acta 236 (2017) 328-336. [59] X. Chen, H.L. Zhang, Y.Y. Li, J.Z. Xing, Z. Zhang, X. Ding, B. Zhang, J. Zhou, S.R. Wang, Fabrication and performance of anode-supported proton conducting solid oxide fuel cells based on BaZr0.1Ce0.7Y0.1Yb0.1O3–δ electrolyte by multi-layer aqueous-based co-tape casting, J. Power Sources 506 (2021) 229922. [60] Z.X. Lin, K. Zhao, G. Cheng, S.Z. Hu, M. Chen, J. Li, D.C. Chen, Q. Xu, M.L. Chang, O. Volodymyr, Catalyst layer supported solid oxide fuel cells running on methane, J. Power Sources 507 (2021) 230317. [61] X.D. Xiong, J. Yu, X.J. Huang, D. Zou, Y.F. Song, M.G. Xu, R. Ran, W. Wang, W. Zhou, Z.P. Shao, Slightly ruthenium doping enables better alloy nanoparticle exsolution of perovskite anode for high-performance direct-ammonia solid oxide fuel cells, J. Mater. Sci. Technol. 125 (2022) 51-58. [62] F.H. Zhang, Q.H Weng, Y.X. Zhang, N. Ai, S.P. Jiang, C.Z. Guan, Y.Q. Shao, H.H. Fang, Y. Luo, K.F. Chen, Facile preparation of electrodes of efficient electrolyte-supported solid oxide fuel cells using a direct assembly approach, Electrochim. Acta 424 (2022) 140643. [63] Y. Komatsu, A. Sciazko, N. Shikazono, Isostatic pressing of screen printed nickel-gadolinium doped ceria anodes on electrolyte-supported solid oxide fuel cells, J. Power Sources 485 (2021) 229317. [64] H.L. Zhang, T. Chen, Z.Z. Huang, G.Z. Hu, J, Zhou, S.R. Wang, A cathode-supported solid oxide fuel cell prepared by the phase-inversion tape casting and impregnating method, Int. J. Hydrog. Energy 47 (43) (2022) 18810-18819. [65] M.K. Rath, B.H. Choi, M.J. Ji, K.T. Lee, Eggshell-membrane-templated synthesis of hierarchically-ordered NiO-Ce0.8Gd0.2O1.9 composite powders and their electrochemical performances as SOFC anodes, Ceram. Int. 40 (2) (2014) 3295-3304. [66] T. Altan, C. Timurkutluk, B. Timurkutluk, Impact of lamination conditions on microtubular solid oxide fuel cells fabricated by tape casting coupled with isostatic pressing, J. Power Sources 532 (2022) 231369. [67] Y.J. Shi, Y.T. Wen, K. Huang, X.L. Xiong, J. Wang, M.L. Liu, D. Ding, Y. Chen, T. Liu, Surface enhanced performance of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes by infiltration Pr-Ni-Mn-O progress, J. Alloys Compd. 902 (2022) 163337. [68] C.K. Cho, B.H. Choi, K.T. Lee, Effect of Co alloying on the electrochemical performance of Ni-Ce0.8Gd0.2O1.9 anodes for hydrocarbon-fueled solid oxide fuel cells, J. Alloy. Compd. 541 (2012) 433-439. [69] X. Li, N. Xu, X. Zhao, K. Huang, Performance of a commercial cathode-supported solid oxide fuel cells prepared by single-step infiltration of an ion-conducting electrocatalyst, J. Power Sources 199 (2012) 132-137. [70] K.J. Jia, L.N. Zheng, W. Liu, J.J. Zhang, F.Y. Yu, X.X. Meng, C. Li, J. Sunarso, N.T. Yang, A new and simple way to prepare monolithic solid oxide fuel cell stack by stereolithography 3D printing technology using 8 mol% yttria stabilized zirconia photocurable slurry, J. Eur. Ceram. Soc. 42 (10) (2022) 4275-4285. |
[1] | Jinlong Liu, Chenye Wang, Xingrui Wang, Chen Zhao, Huiquan Li, Ganyu Zhu, Jianbo Zhang. Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 53-60. |
[2] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 165-172. |
[3] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[4] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 228-234. |
[5] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 1-8. |
[6] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[7] | Hae-Kyun Park, Dong-Hyuk Park, Bum-Jin Chung. Influence of the electrolyte conductivity on the critical current density and the breakdown voltage [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 169-175. |
[8] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 193-199. |
[9] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 210-221. |
[10] | Junyang Liu, Luming Wang, Yuhang Bian, Chunshan Li, Zengxi Li, Jie Li. Liquid-phase esterification of methacrylic acid with methanol catalyzed by cation-exchange resin in a fixed bed reactor: Experimental and kinetic studies [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 1-10. |
[11] | Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 53-68. |
[12] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 69-75. |
[13] | Bing Liu, Yingjiao Li, Moses Arowo, Guangwen Chu, Yong Luo, Liangliang Zhang, Haikui Zou, Baochang Sun. Sulfonation of 1, 4-diaminoanthraquinone leuco by chlorosulfonic acid: Kinetics and process intensification [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 163-169. |
[14] | Xinyu Liu, Hongliang Sheng, Song He, Chunhua Du, Yuansheng Ma, Chichi Ruan, Chunxiang He, Huaming Dai, Yajun Huang, Yuelei Pan. Insight into pyrolysis of hydrophobic silica aerogels: Kinetics, reaction mechanism and effect on the aerogels [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 266-281. |
[15] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 10-16. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 259
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 125
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||