Chinese Journal of Chemical Engineering ›› 2023, Vol. 59 ›› Issue (7): 105-117.DOI: 10.1016/j.cjche.2022.11.014
Previous Articles Next Articles
Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang
Received:
2022-08-26
Revised:
2022-11-14
Online:
2023-10-14
Published:
2023-07-28
Contact:
Yunfei Gao,E-mail:yunfeigao@ecust.edu.cn;Fuchen Wang,E-mail:wfch@ecust.edu.cn
Supported by:
Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang
通讯作者:
Yunfei Gao,E-mail:yunfeigao@ecust.edu.cn;Fuchen Wang,E-mail:wfch@ecust.edu.cn
基金资助:
Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling[J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117.
Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling[J]. 中国化学工程学报, 2023, 59(7): 105-117.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.11.014
[1] A. Raj, Combustion kinetics of H2S and other sulfurous species with relevance to industrial processes, Prog. Energy Combust. Sci. 80 (2020) 100848.Doi: 10.1016/j.pecs.2020.100848 [2] D. Barba, F. Cammarota, V. Vaiano, E. Salzano, V. Palma, Experimental and numerical analysis of the oxidative decomposition of H2S, Fuel 198 (2017) 68-75.Doi: 10.1016/j.fuel.2016.12.038 [3] Y. Wang, Z.L. Wang, J.F. Pan, Y.X. Liu, Removal of gaseous hydrogen sulfide using Fenton reagent in a spraying reactor, Fuel 239 (2019) 70-75.Doi: 10.1016/j.fuel.2018.10.143 [4] M. Sassi, N. Amira, Chemical reactor network modeling of a microwave plasma thermal decomposition of H2S into hydrogen and sulfur, Int. J. Hydrog. Energy 37 (13) (2012) 10010-10019.Doi: 10.1016/j.ijhydene.2012.04.006 [5] S. An, J.C. Jung, Kinetic modeling of thermal reactor in Claus process using CHEMKIN-PRO software, Case Stud. Therm. Eng. 21 (2020) 100694.Doi: 10.1016/j.csite.2020.100694 [6] R. El-Bishtawi, N. Haimour, Claus recycle with double combustion process, Fuel Process. Technol. 86 (3) (2004) 245-260.Doi: 10.1016/j.fuproc.2004.04.001 [7] B. Mahmoodi, S.H. Hosseini, A. Raj, Hooman, K., A new acid gas destruction kinetic model for reaction furnace of an industrial sulfur recovery unit: A CFD study, Chem. Eng. Sci. 256 (2022) 117692.Doi: 10.1016/j.ces.2022.117692 [8] S. Ibrahim, A. Al Shoaibi, A.K. Gupta, Effect of benzene on product evolution in a H2S/O2 flame under Claus condition, Appl. Energy 145 (2015) 21-26.Doi: 10.1016/j.apenergy.2015.01.094 [9] S. Ibrahim, R. K. Rahman, A. Raj, A split-flow sulfur recovery process for the destruction of aromatic hydrocarbon contaminants in acid gas, J. Nat. Gas Sci. Eng. 97 (2022) 104378.Doi: 10.1016/j.jngse.2021.104378 [10] N.J. Nabikandi, S.Fatemi, Kinetic modelling of a commercial sulfur recovery unit based on Claus straight through process: Comparison with equilibrium model, J. Ind. Eng. Chem. 30 (2015) 50-63.Doi: 10.1016/j.jiec.2015.05.001 [11] A. Mehmood, An evaluation of kinetic models for the simulation of Claus reaction furnaces in sulfur recovery units under different feed conditions, J. Nat. Gas Sci. Eng. 74 (2020) 103106.Doi: 10.1016/j.jngse.2019.103106 [12] A.Y. Ibrahim,,, Energy and exergy studies of a Sulphur recovery unit in normal and optimized cases: A real starting up plant, Energy Convers. Manag. X 15 (2022) 100241.Doi: 10.1016/j.ecmx.2022.100241 [13] H.R. Mahdipoor, Feasibility study of a sulfur recovery unit containing mercaptans in lean acid gas feed, J. Nat. Gas Sci. Eng. 31 (2016) 585-588.Doi: 10.1016/j.jngse.2016.03.045 [14] N. Abumounshar,,, Novel processes for lean acid gas utilization for sulfur production with high efficiency, Chem. Eng. Sci. 248 (2022) 117194.Doi: 10.1016/j.ces.2021.117194 [15] Y. Li, Equilibrium prediction of acid gas partial oxidation with presence of CH4 and CO2 for hydrogen production, Appl. Therm. Eng. 107 (2016) 125-134.Doi: 10.1016/j.applthermaleng.2016.05.076 [16] S. Ibrahim, A. Raj, Kinetic simulation of acid gas (H2S and CO2) destruction for simultaneous syngas and sulfur recovery, Ind. Eng. Chem. Res. 55 (24) (2016) 6743-6752.Doi: 10.1021/acs.iecr.6b01176 [17] J.S. Eow, Recovery of sulfur from sour acid gas: A review of the technology, Environ. Prog. 21 (3) (2002) 143-162.Doi: 10.1002/ep.670210312 [18] I. Saanum, M. Ditaranto, Experimental study of oxy-fuel combustion under gas turbine conditions, Energy Fuels 31 (4) (2017) 4445-4451.Doi: 10.1021/acs.energyfuels.6b03114 [19] Q.W. Liu, W.Q. Zhong, R. Tang, H.Q. Yu, J.R. Gu, G.W. Zhou, A.B. Yu, Experimental tests on co-firing coal and biomass waste fuels in a fluidised bed under oxy-fuel combustion, Fuel 286 (2021) 119312.Doi: 10.1016/j.fuel.2020.119312 [20] F.M. Wang, B.X. Shen, J.C. Yang, S. Singh, Review of mercury formation and capture from CO2-enriched oxy-fuel combustion flue gas, Energy Fuels 31 (2) (2017) 1053-1064.Doi: 10.1021/acs.energyfuels.6b02420 [21] D.K. Hong, X. Guo, C.B. Wang, A reactive molecular dynamics study of HCN oxidation during pressurized oxy-fuel combustion, Fuel Process. Technol. 224 (2021) 107020.Doi: 10.1016/j.fuproc.2021.107020 [22] H. Selim, A.K. Gupta, A. Al Shoaibi, Effect of CO2 and N2 concentration in acid gas stream on H2S combustion, Appl. Energy 98 (2012) 53-58.Doi: 10.1016/j.apenergy.2012.02.072 [23] S. Ibrahim, A. Al Shoaibi, A.K. Gupta, Role of toluene to acid gas (H2S and CO2) combustion in H2/O2-N2 flame under Claus condition, Appl. Energy 149 (2015) 62-68.Doi: 10.1016/j.apenergy.2015.03.117 [24] H. Selim, S. Ibrahim, A. Al Shoaibi, A.K. Gupta, Investigation of sulfur chemistry with acid gas addition in hydrogen/air flames, Appl. Energy 113 (2014) 1134-1140.Doi: 10.1016/j.apenergy.2013.08.054 [25] Y. Li, Q.H. Guo, X.L. Yu, Z.H. Dai, Y.F. Wang, G.S. Yu, F.C. Wang, Effect of O2 enrichment on acid gas oxidation and formation of COS and CS2 in a rich diffusion flame, Appl. Energy 206 (2017) 947-958.Doi: 10.1016/j.apenergy.2017.07.113 [26] K. Karan, A.K. Mehrotra, L.A. Behie, A high-temperature experimental and modeling study of homogeneous gas-phase COS reactions applied to Claus plants, Chem. Eng. Sci. 54 (15-16) (1999) 2999-3006.Doi: 10.1016/S0009-2509(98)00475-8 [27] P.D. Clark, N.I. Dowling, M. Huang, W.Y. Svrcek, W.D. Monnery, Mechanisms of CO and COS formation in the Claus furnace, Ind. Eng. Chem. Res. 40 (2) (2001) 497-508.Doi: 10.1021/ie990871l [28] Y. Li, X.L. Yu, H.J. Li, Q.H. Guo, Z.H. Dai, G.S. Yu, F.C. Wang, Detailed kinetic modelling of H2S oxidation with presence of CO2 under rich condition, Appl. Energy 190 (2017) 824-834.Doi: 10.1016/j.apenergy.2016.12.150 [29] H. Selim, S. Ibrahim, A. Al Shoaibi, A.K. Gupta, Effect of oxygen enrichment on acid gas combustion in hydrogen/air flames under Claus conditions, Appl. Energy 109 (2013) 119-124.Doi: 10.1016/j.apenergy.2013.03.026 [30] Y. Li, Q.H. Guo, Z.H. Dai, Y.C. Dong, G.S. Yu, F.C. Wang, Study of oxidation for gas mixture of H2S and CH4 in a non-premixed flame under oxygen deficient condition, Appl. Therm. Eng. 117 (2017) 659-667.Doi: 10.1016/j.applthermaleng.2016.10.168 [31] S. Ibrahim, A. Al Shoaibi, A.K. Gupta, Xylene addition effects to H2S combustion under Claus condition, Fuel 150 (2015) 1-7.Doi: 10.1016/j.fuel.2015.02.001 [32] S. Ibrahim, A. Al Shoaibi, A.K. Gupta, Role of toluene in hydrogen sulfide combustion under Claus condition, Appl. Energy 112 (2013) 60-66.Doi: 10.1016/j.apenergy.2013.05.065 [33] H. Selim, A. Al Shoaibi, A.K. Gupta, Effect of H2S in methane/air flames on sulfur chemistry and products speciation, Appl. Energy 88 (8) (2011) 2593-2600.Doi: 10.1016/j.apenergy.2011.02.032 [34] B.A. Rabee, The effect of inverse diffusion flame burner-diameter on flame characteristics and emissions, Energy 160 (2018) 1201-1207.Doi: 10.1016/j.energy.2018.07.061 [35] Y.A. Cengel, Heat Transfer: A Practical Approach, 2nd ed, Mc-Graw Hill, 2003. [36] W. Don, R.H. Green, Perry’s chemical engineers, Eighth Edition, McGraw-Hill, 2008 [37] S. Whitaker, Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles, AIChE J. 18 (2) (1972) 361-371.Doi: 10.1002/aic.690180219 [38] H. Xiao,,, Study on counterflow premixed flames using high concentration ammonia mixed with methane, Fuel 275 (2020) 117902.Doi: 10.1016/j.fuel.2020.117902 [39] H.W. Zhu, S Lai, A Valera-Medina, J Li, H Fu, Effects of CO and H2 addition on OH* chemiluminescence characteristics in laminar rich inverse diffusion flames, Fuel 254 (2019) 115554. [40] S.R. Lee, S.H. Chung, On the structure of hydrogen diffusion flames with reduced kinetic mechanisms, Combust. Sci. Technol. 96 (4-6) (1994) 247-277.Doi: 10.1080/00102209408935358 [41] R.J. Kee, A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flames, Symp. Int. Combust. 22 (1) (1989) 1479-1494.Doi: 10.1016/S0082-0784(89)80158-4 [42] A.E. Lutz, R.J. Kee, J.F. Grcar, F.M. Rupley, OPPDIF: A Fortran program for computing opposed-flow diffusion flames, National Technical Information Service, (1997). https://www.researchgate.net/publication/239888329_OPPDIF_A_Fortran_program_for_computing_opposed-flow_diffusion_flames. [43] P.X. Wang,,, Study on the effect of H2O on the formation of CO in the counterflow diffusion flame of H2/CO syngas in O2/H2O, Fuel 234 (2018) 516-525.Doi: 10.1016/j.fuel.2018.07.020 [44] V.V. Azatyan, Investigation of low-pressure flames of a number of compounds containing sulfur by the ESR method, Symp. Int. Combust. 12 (1) (1969) 989-994.Doi: 10.1016/S0082-0784(69)80477-7 [45] H. Selim, A. Al Shoaibi, A.K. Gupta, Experimental examination of flame chemistry in hydrogen sulfide-based flames, Appl. Energy 88 (8) (2011) 2601-2611.Doi: 10.1016/j.apenergy.2011.02.029 [46] C. Zhou, Experimental and kinetic modelling study of H2S oxidation, Proc. Combust. Inst. 34 (1) (2013) 625-632.Doi: 10.1016/j.proci.2012.05.083 [47] K. Sendt, Chemical kinetic modeling of the H/S system: H2S thermolysis and H2 sulfidation, Proc. Combust. Inst. 29 (2) (2002) 2439-2446.Doi: 10.1016/S1540-7489(02)80297-8 [48] T.Y. Cong,,, A detailed reaction mechanism for hydrogen production via hydrogen sulphide (H2S) thermolysis and oxidation, Int. J. Hydrog. Energy 41 (16) (2016) 6662-6675.Doi: 10.1016/j.ijhydene.2016.03.053 [49] C. Wang, G. Zhang, Z. Wang, Q.S. Li, Y. Zhang, Direct ab initio dynamics study of the hydrogen abstraction reaction: H2S+O→HS+OH, J. Mol. Struct. THEOCHEM 731 (1-3) (2005) 187-192.Doi: 10.1016/j.theochem.2005.02.075 [50] A. Goumri, D. Laakso, J.D.R. Rocha, C.E. Smith, P. Marshall, Computational studies of the potential energy surface for O(3P)+H2S: characterization of transition states and the enthalpy of formation of HSO and HOS, J. Chem. Phys. 102 (1) (1995) 161-169.Doi: 10.1063/1.469387 [51] B.A. Ellingson, D.G. Truhlar, Explanation of the unusual temperature dependence of the atmospherically important OH + H2S → H2O + HS reaction and prediction of the rate constant at combustion temperatures, J. Am. Chem. Soc. 129 (42) (2007) 12765-12771.Doi: 10.1021/ja072538b [52] Y.F. Xing, Large eddy simulation of a turbulent non-premixed flame based on the flamelet-generated manifolds approach and a reduced mechanism verification, Aerosp. Sci. Technol. 105 (2020) 105952.Doi: 10.1016/j.ast.2020.105952 [53] M. Abián, CS2 and COS conversion under different combustion conditions, Combust. Flame 162 (5) (2015) 2119-2127.Doi: 10.1016/j.combustflame.2015.01.010 [54] J. Berner-Cambot, C. Vovelle, R. Delbourgo, Flame structures of H2S—air diffusion flames, Symp. Int. Combust. 18 (1) (1981) 777-783.Doi: 10.1016/s0082-0784(81)80081-1 [55] N.O. Guldal,,, New catalysts for hydrogen production from H2S: Preliminary results, Int. J. Hydrog. Energy 40 (24) (2015) 7452-7458.Doi: 10.1016/j.ijhydene.2015.02.107 [56] S. Ibrahim, A. Al Shoaibi, A.K. Gupta, Toluene destruction in thermal stage of Claus reactor with oxygen enriched air, Appl. Energy 115 (2014) 1-8.Doi: 10.1016/j.apenergy.2013.10.060 [57] S. Ibrahim, R.K. Rahman, A. Raj, Effects of H2O in the feed of sulfur recovery unit on sulfur production and aromatics emission from Claus furnace, Ind. Eng. Chem. Res. 56 (41) (2017) 11713-11725.Doi: 10.1021/acs.iecr.7b02553 [58] Y. Murakami, M. Kosugi, K.J. Susa, T. Kobayashi, N. Fujii, Kinetics and mechanism for the oxidation of CS2 and COS at high temperature, Bull. Chem. Soc. Jpn. 74 (7) (2001) 1233-1240.Doi: 10.1246/bcsj.74.1233 [59] P. Glarborg, B. Halaburt, P. Marshall, A. Guillory, J. Troe, M. Thellefsen, K. Christensen, Oxidation of reduced sulfur species: carbon disulfide, J. Phys. Chem. A 118 (34) (2014) 6798-6809.https://pubmed.ncbi.nlm.nih.gov/25116264/ [60] Y. Li, X.L. Yu, H.J. Li, Q.H. Guo, Z.H. Dai, G.S. Yu, F.C. Wang, Detailed kinetic modeling of homogeneous H2S-CH4 oxidation under ultra-rich condition for H2 production, Appl. Energy 208 (2017) 905-919.Doi: 10.1016/j.apenergy.2017.09.059 |
[1] | Chaojie Li, Xianxin Fang, Meiling Sun, Jihai Duan, Weiwen Wang. Study on two-phase cloud dispersion from liquefied CO2 release [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 37-45. |
[2] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 228-234. |
[3] | Junyang Liu, Luming Wang, Yuhang Bian, Chunshan Li, Zengxi Li, Jie Li. Liquid-phase esterification of methacrylic acid with methanol catalyzed by cation-exchange resin in a fixed bed reactor: Experimental and kinetic studies [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 1-10. |
[4] | Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 53-68. |
[5] | Zijie Zhang, Qianyu Zha, Ying Liu, Zhibing Zhang, Jia Liu, Zheng Zhou. Study on the epoxidation of olefins with H2O2 catalyzed by biquaternary ammonium phosphotungstic acid [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 146-154. |
[6] | Bing Liu, Yingjiao Li, Moses Arowo, Guangwen Chu, Yong Luo, Liangliang Zhang, Haikui Zou, Baochang Sun. Sulfonation of 1, 4-diaminoanthraquinone leuco by chlorosulfonic acid: Kinetics and process intensification [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 163-169. |
[7] | Xinyu Liu, Hongliang Sheng, Song He, Chunhua Du, Yuansheng Ma, Chichi Ruan, Chunxiang He, Huaming Dai, Yajun Huang, Yuelei Pan. Insight into pyrolysis of hydrophobic silica aerogels: Kinetics, reaction mechanism and effect on the aerogels [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 266-281. |
[8] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 10-16. |
[9] | Chenyang Zhao, Yinhan Cheng, Guangfei Qu, Yongheng Yuan, Fenghui Wu, Ye Liu, Shan Liu, Junyan Li, Ping Ning. High-performance liquid-phase catalytic purification of phosphine in tail gas using Pd(II)/Cu(II) composite [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 98-108. |
[10] | Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 338-348. |
[11] | Shengfeng Luo, Song Zhang, Yiping Zeng, Hui Zhang, Lili Zheng, Zhaopeng Xu. Study on oxygen transport and titanium oxidation in coating cracks under parallel gas flow based on LBM modelling [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 15-24. |
[12] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 25-32. |
[13] | Yuxi Chai, Yanan Zhang, Yannan Tan, Zhiwei Li, Huangzhao Wei, Chenglin Sun, Haibo Jin, Zhao Mu, Lei Ma. Life cycle assessment of high concentration organic wastewater treatment by catalytic wet air oxidation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 80-88. |
[14] | Peiyin Chen, Yanxiong Fang, Kaihong Xie, Yao Chen, Yang Liu, Hongliang Zuo, Weijian Lu, Baoyu Liu. Lacunary silicotungstic heteropoly salts as high-performance catalysts in oxidation of cyclopentene [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 152-159. |
[15] | Tinghao Jia, Yunbo Yu, Qing Liu, Yao Yang, Ji-Jun Zou, Xiangwen Zhang, Lun Pan. Theoretical and experimental study on the inhibition of jet fuel oxidation by diarylamine [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 225-232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||