Chinese Journal of Chemical Engineering ›› 2023, Vol. 60 ›› Issue (8): 194-204.DOI: 10.1016/j.cjche.2023.01.002
Previous Articles Next Articles
Xiaolin Pan, Mengyuan Gao, Yun Wang, Yanping He, Tian Si, Yanlin Sun
Received:
2022-11-17
Revised:
2022-12-24
Online:
2023-10-28
Published:
2023-08-28
Contact:
Yanping He,E-mail:grace.he1985@hotmail.com
Supported by:
Xiaolin Pan, Mengyuan Gao, Yun Wang, Yanping He, Tian Si, Yanlin Sun
通讯作者:
Yanping He,E-mail:grace.he1985@hotmail.com
基金资助:
Xiaolin Pan, Mengyuan Gao, Yun Wang, Yanping He, Tian Si, Yanlin Sun. Poly(lactic acid)-aspirin microspheres prepared via the traditional and improved solvent evaporation methods and its application performances[J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 194-204.
Xiaolin Pan, Mengyuan Gao, Yun Wang, Yanping He, Tian Si, Yanlin Sun. Poly(lactic acid)-aspirin microspheres prepared via the traditional and improved solvent evaporation methods and its application performances[J]. 中国化学工程学报, 2023, 60(8): 194-204.
[1] R.A. Alshaikh, C. Waeber, K.B. Ryan, Polymer based sustained drug delivery to the ocular posterior segment: Barriers and future opportunities for the treatment of neovascular pathologies, Adv. Drug Deliv. Rev. 187 (2022) 114342. [2] B. Tyler, D. Gullotti, A. Mangraviti, T. Utsuki, H. Brem, Polylactic acid (PLA) controlled delivery carriers for biomedical applications, Adv. Drug Deliv. Rev. 107 (2016) 163-175. [3] S. Salunke, F. O'Brien, D.C.T. Tan, D. Harris, M.C. Math, T. Ariën, S. Klein, C. Timpe, E.P.F.I. EuPFI, Oral drug delivery strategies for development of poorly water soluble drugs in paediatric patient population, Adv. Drug Deliv. Rev. 190 (2022) 114507. [4] M. Rasoulianboroujeni, L. Repp, H.J. Lee, G.S. Kwon, Production of paclitaxel-loaded PEG-b-PLA micelles using PEG for drug loading and freeze-drying, J. Control. Release 350 (2022) 350-359. [5] N.Q. Shi, J. Zhou, J. Walker, L. Li, J.K.Y. Hong, K.F. Olsen, J. Tang, R. Ackermann, Y. Wang, B. Qin, A. Schwendeman, S.P. Schwendeman, Microencapsulation of luteinizing hormone-releasing hormone agonist in poly (lactic-co-glycolic acid) microspheres by spray-drying, J. Control. Release 321 (2020) 756-772. [6] H.F. Ge, P.X. Lin, T.D. Luo, Z.M. Yan, J.B. Xiao, S. Miao, J.C. Chen, Fabrication of Ligusticum chuanxiong polylactic acid microspheres: A promising way to enhance the hepatoprotective effect on bioactive ingredients, Food Chem. 317 (2020) 126377. [7] W.Y. Pei, X.Q. Li, R.L. Bi, X. Zhang, M. Zhong, H. Yang, Y.Y. Zhang, K. Lv, Exosome membrane-modified M2 macrophages targeted nanomedicine: Treatment for allergic asthma, J. Control. Release 338 (2021) 253-267. [8] Y.D. Deng, Z.J. Jiang, Y.C. Jin, J.N. Qiao, S. Yang, H. Xiong, J. Yao, Reinforcing vascular normalization therapy with a bi-directional nano-system to achieve therapeutic-friendly tumor microenvironment, J. Control. Release 340 (2021) 87-101. [9] N. Joharatnam-Hogan, F. Cafferty, R. Hubner, D. Swinson, S. Sothi, K. Gupta, S. Falk, K. Patel, N. Warner, V. Kunene, S. Rowley, K. Khabra, T. Underwood, J. Jankowski, J. Bridgewater, A. Crossley, V. Henson, L. Berkman, D. Gilbert, H. Kynaston, A. Ring, D. Cameron, F. Din, J. Graham, T. Iveson, R. Adams, A. Thomas, R. Wilson, C.S. Pramesh, R. Langley, A.A T.M. Group, Aspirin as an adjuvant treatment for cancer: Feasibility results from the Add-Aspirin randomised trial, Lancet Gastroenterol. Hepatol. 4 (11) (2019) 854-862. [10] N. Van Oosterom, M. Barras, N. Cottrell, R. Bird, Platelet function assays for the diagnosis of aspirin resistance, Platelets 33 (3) (2022) 329-338. [11] D.N. Olson, T. Russell, A.C. Ranzini, Assessment of adherence to aspirin for preeclampsia prophylaxis and reasons for nonadherence, Am. J. Obstet. Gynecol. MFM 4 (5) (2022) 100663. [12] K.Z. Isoardi, C. Henry, K. Harris, G.K. Isbister, Activated charcoal and bicarbonate for aspirin toxicity: A retrospective series, J. Med. Toxicol. 18 (1) (2022) 30-37. [13] M. Nofar, D. Sacligil, P.J. Carreau, M.R. Kamal, M.C. Heuzey, Poly (lactic acid) blends: Processing, properties and applications, Int. J. Biol. Macromol. 125 (2019) 307-360. [14] N. More, M. Avhad, S. Utekar, A. More, Polylactic acid (PLA) membrane—significance, synthesis, and applications: A review, Polym. Bull. (2022) 1-37. [15] M.A. Elsawy, K.H. Kim, J.W. Park, A. Deep, Hydrolytic degradation of polylactic acid (PLA) and its composites, Renew. Sustain. Energy Rev. 79 (2017) 1346-1352. [16] A.M. Maadani, E. Salahinejad, Performance comparison of PLA- and PLGA-coated porous bioceramic scaffolds: Mechanical, biodegradability, bioactivity, delivery and biocompatibility assessments, J. Control. Release 351 (2022) 1-7. [17] L.Q. Guo, Z.H. Liang, L. Yang, W.Y. Du, T. Yu, H.Y. Tang, C.D. Li, H.B. Qiu, The role of natural polymers in bone tissue engineering, J. Control. Release 338 (2021) 571-582. [18] A.Q. Wang, J.X. Cui, Y. Wang, H.X. Zhu, N.J. Li, C.X. Wang, Y. Shen, P.F. Liu, B. Cui, C.J. Sun, X. Zhao, C. Wang, F. Gao, Z.H. Zeng, H.X. Cui, Preparation and characterization of a novel controlled-release nano-delivery system loaded with pyraclostrobin via high-pressure homogenization, Pest Manag. Sci. 76 (8) (2020) 2829-2837. [19] G.Y. Li, Y.P. He, W.Q. Han, Y. Yu, L.H. Zhu, T. Si, Y.L. Sun, An improved solvent evaporation method to produce poly (lactic acid) microspheres via foam-transfer, Int. J. Biol. Macromol. 172 (2021) 114-123. [20] J.Q. Zhai, Y. Wang, X.P. Zhou, Y. Ma, S.X. Guan, Long-term sustained release Poly(lactic-co-glycolic acid) microspheres of asenapine maleate with improved bioavailability for chronic neuropsychiatric diseases, Drug Deliv. 27 (1) (2020) 1283-1291. [21] J.Q. Zhai, Z.L. Ou, L.T. Zhong, Y. Wang, L.P. Cao, S.X. Guan, Exenatide-loaded inside-porous poly(lactic-co-glycolic acid) microspheres as a long-acting drug delivery system with improved release characteristics, Drug Deliv. 27 (1) (2020) 1667-1675. [22] X. Li, L.L. Liu, P.F. Yang, P. Li, J.J. Xin, R.X.Su, Synthesis of collagen-modified polylactide and its application in drug delivery, J. Appl. Polym. Sci. 129 (6) (2013) 3290-3296. [23] F.R. Kang, J. Singh, Effect of additives on the release of a model protein from PLGA microspheres, AAPS Pharmscitech 2 (4) (2001) 86-92. [24] T. Tosakul, P. Suetong, P. Chanthot, C. Pattamaprom, Degradation of polylactic acid and polylactic acid/natural rubber blown films in aquatic environment, J Polym Res 29 (6) (2022) 242. [25] I.C. Thaarup, C. Gummesson, T. Bjarnsholt, Measuring enzymatic degradation of degradable starch microspheres using confocal laser scanning microscopy, Acta Biomater. 131 (2021) 464-471. [26] M. Bil, I. Hipś, P. Mrówka, W. Święszkowski, Studies on enzymatic degradation of multifunctional composite consisting of chitosan microspheres and shape memory polyurethane matrix, Polym. Degrad. Stab. 182 (2020) 109392. [27] W.H. Wang, L. Sang, Q.B. Guan, Y.P. Zhao, Z.Y. Wei, Y. Li, X-ray visible microspheres derived from highly branched biodegradable poly(lactic acid) terminated by triiodobenzoic acid: Preparation and degradation behavior, Polym. Degrad. Stab. 176 (2020) 109149. [28] A. Hidayat, S. Tachibana, Characterization of polylactic acid (PLA)/kenaf composite degradation by immobilized mycelia of Pleurotus ostreatus, Int. Biodeterior. Biodegrad. 71 (2012) 50-54. [29] J.L. Li, C.G. Zhou, Research on degradation performance of biodegradable materials-polylactic acid and its copolymers, Eng. Plast. Appl. 39 (2011) (10)96-99. [30] M.H. Sun, Q. Chen, G.Q. Song, Research of degradation of polylactic acid, New Chem. Mater. 41 (2013) (1)140-142. [31] M. Kervran, C. Vagner, M. Cochez, M. Ponçot, M.R. Saeb, H. Vahabi, Thermal degradation of polylactic acid (PLA)/polyhydroxybutyrate (PHB) blends: A systematic review, Polym. Degrad. Stab. 201 (2022) 109995. [32] S. Dopico-García, A. Ares-Pernas, J. Otero-Canabal, M. Castro-López, J.M. López-Vilariño, V. González-Rodríguez, M.J.Abad-López, Insight into industrial PLA aging process by complementary use of rheology, HPLC, and MALDI, Polym. Adv. Technol. 24 (8) (2013) 723-731. [33] N.P. Tipnis, J. Shen, D. Jackson, D. Leblanc, D.J. Burgess, Flow-through cell-based in vitro release method for triamcinolone acetonide poly (lactic-co-glycolic) acid microspheres, Int. J. Pharm. 579 (2020) 119130. [34] M.P. Arrieta, E. Fortunati, F. Dominici, E. Rayón, J. López, J.M. Kenny, Multifunctional PLA-PHB/cellulose nanocrystal films: Processing, structural and thermal properties, Carbohydr. Polym. 107 (2014) 16-24. [35] G.Y. Li, Y. Yu, W.Q. Han, L.H. Zhu, T. Si, H. Wang, K. Li, Y.L. Sun, Y.P. He, Solvent evaporation self-motivated continual synthesis of versatile porous polymer microspheres via foaming-transfer, Colloids Surf. A Physicochem. Eng. Aspects 615 (2021) 126239. [36] Y. Yu, G.Y. Li, W.Q. Han, L.H. Zhu, T. Si, H. Wang, Y.L. Sun, Y.P. He, An efficient preparation of porous polymeric microspheres by solvent evaporation in foam phase, Chin. J. Chem. Eng. 29 (2021) 409-416. [37] Z.H. Zhang, Y.P. He, Z.B.Zhang, Micromanipulation and automatic data analysis to determine the mechanical strength of microparticles, Micromachines 13 (5) (2022) 751. [38] G.S. Du, Z.H. Zhang, P.H. He, Z.B. Zhang, X. Sun, Determination of the mechanical properties of polymeric microneedles by micromanipulation, J. Mech. Behav. Biomed. Mater. 117 (2021) 104384. [39] Y. Zhang, A.N. Mustapha, X.T. Zhang, D. Baiocco, G. Wellio, T. Davies, Z.B. Zhang, Y.L. Li, Improved volatile cargo retention and mechanical properties of capsules via sediment-free in situ polymerization with cross-linked poly(vinyl alcohol) as an emulsifier, J. Colloid Interface Sci. 568 (2020) 155-164. [40] S.Y. Luo, M.Y. Gao, X.L. Pan, Y. Wang, Y.P. He, L.H. Zhu, T. Si, Y.L. Sun, Fragrance oil microcapsules with low content of formaldehyde: Preparation and characterization, Colloids Surf. A Physicochem. Eng. Aspects 648 (2022) 129019. [41] F. Yu, C.H. Xue, Z.B. Zhang, Mechanical characterization of fish oil microcapsules by a micromanipulation technique, LWT 144 (2021) 111194. [42] S.F. Yap, M.J. Adams, J.P.K. Seville, Z.B. Zhang, Single and bulk compression of pharmaceutical excipients: Evaluation of mechanical properties, Powder Technol. 185 (1) (2008) 1-10. |
[1] | Xia Miao, Xiaofan Pang, Shiyu Li, Haoguang Wei, Jianhao Yin, Xiangming Kong. Mechanical strength and the degradation mechanism of metakaolin based geopolymer mixed with ordinary Portland cement and cured at high temperature and high relative humidity [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 118-130. |
[2] | Hu Chen, Ying Wang, Puyu Wang, Yongkang Lv. Assessing quinoline removal performances of an aerobic continuous moving bed biofilm reactor (MBBR) bioaugmented with Pseudomonas citronellolis LV1 [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 132-140. |
[3] | Yaqiao Liu, Shuozhen Hu, Xinsheng Zhang, Shigang Sun. Investigation of photoelectrocatalytic degradation mechanism of methylene blue by α-Fe2O3 nanorods array [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 162-172. |
[4] | Jiajun Wang, Wenbin Yang, Jiangtao Geng, Zhigang Shao, Wei Song. Experimental investigation on degradation mechanism of membrane electrode assembly at different humidity under automotive protocol [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 70-79. |
[5] | Iltaf Khan, Chunjuan Wang, Shoaib Khan, Jinyin Chen, Aftab Khan, Sayyar Ali Shah, Aihua Yuan, Sohail Khan, Mehwish K. Butt, Humaira Asghar. Bio-capped and green synthesis of ZnO/g-C3N4 nanocomposites and its improved antibiotic and photocatalytic activities: An exceptional approach towards environmental remediation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 215-224. |
[6] | Abid Ali, Bilal Ul Amin, Wenwu Yu, Taijiang Gui, Weiwei Cong, Kai Zhang, Zheming Tong, Jiankun Hu, Xiaoli Zhan, Qinghua Zhang. Eco-friendly biodegradable polyurethane based coating for antibacterial and antifouling performance [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 80-88. |
[7] | Jingjing Pan, Haoran Sun, Keyi Chen, Yuhao Zhang, Pengnian Shan, Weilong Shi, Feng Guo. Nanodiamonds decorated yolk-shell ZnFe2O4 sphere as magnetically separable and recyclable composite for boosting antibiotic degradation performance [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 162-172. |
[8] | Chao Zhang, Youzhi Liu, Weizhou Jiao, Hongyan Shen, Xigang Yuan, Shengkun Jia. An optimization method for enhancement of gas–liquid mass transfer in a bubble column reactor based on the entropy generation extremum principle [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 83-88. |
[9] | Hongwei Guo, Linyuan Chen, Xueying Zhang, Huanhao Chen, Yan Shao. Silicalite-1 zeolite encapsulated Fe nanocatalyst for Fenton-like degradation of methylene blue [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 251-259. |
[10] | Feng Guo, Chunli Shi, Wei Sun, Yanan Liu, Xue Lin, Weilong Shi. Pomelo biochar as an electron acceptor to modify graphitic carbon nitride for boosting visible-light-driven photocatalytic degradation of tetracycline [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 1-11. |
[11] | Min Lu, Mengxuan Liu, Chunli Xu, Yu Yin, Lei Shi, Hong Wu, Aihua Yuan, Xiao-Ming Ren, Shaobin Wang, Hongqi Sun. Location and size regulation of manganese oxides within mesoporous silica for enhanced antibiotic degradation [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 36-43. |
[12] | Hao Zhou, Qi Yin. Hydrothermal preparation of Nb-doped NaTaO3 with enhanced photocatalytic activity for removal of organic dye [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 142-149. |
[13] | Yaling Li, Hao Ai, Liangzhi Qiao, Yinghong Wang, Kaifeng Du. Fabrication and characterization of hierarchical porous Ni2+ doped hydroxyapatite microspheres and their enhanced protein adsorption capacity [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 238-247. |
[14] | Jiafei Wu, Yuning Jin, Danping Wu, Xiaoying Yan, Na Ma, Wei Dai. Well-construction of Zn2SnO4/SnO2@ZIF-8 core–shell hetero-structure with efficient photocatalytic activity towards tetracycline under restricted space [J]. Chinese Journal of Chemical Engineering, 2022, 52(12): 45-55. |
[15] | Fenghongkang Pan, Yimeng Wang, Kaiqing Zhao, Jun Hu, Honglai Liu, Ying Hu. Photocatalytic degradation of tetracycline hydrochloride with visible light-responsive bismuth tungstate/conjugated microporous polymer [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 488-496. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 73
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 109
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||