Chinese Journal of Chemical Engineering ›› 2024, Vol. 70 ›› Issue (6): 222-233.DOI: 10.1016/j.cjche.2024.03.014
Previous Articles Next Articles
Junbo Feng1,2,4, Junyan Wu1,3, Dongdong Yan1, Yadong Zhang1,3
Received:
2023-11-08
Revised:
2024-03-11
Online:
2024-08-05
Published:
2024-06-28
Contact:
Junbo Feng,E-mail:junbo716@163.com;Yadong Zhang,E-mail:zhangyadong2016@163.com
Supported by:
Junbo Feng1,2,4, Junyan Wu1,3, Dongdong Yan1, Yadong Zhang1,3
通讯作者:
Junbo Feng,E-mail:junbo716@163.com;Yadong Zhang,E-mail:zhangyadong2016@163.com
基金资助:
Junbo Feng, Junyan Wu, Dongdong Yan, Yadong Zhang. Porous silica nano-flowers stabilized Pt-Pd bimetallic nanoparticles as heterogeneous catalyst for efficiently synthesizing guaiacol from 2-methoxycyclohexanol[J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 222-233.
Junbo Feng, Junyan Wu, Dongdong Yan, Yadong Zhang. Porous silica nano-flowers stabilized Pt-Pd bimetallic nanoparticles as heterogeneous catalyst for efficiently synthesizing guaiacol from 2-methoxycyclohexanol[J]. 中国化学工程学报, 2024, 70(6): 222-233.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2024.03.014
[1] S.Y. Ren, Z.H. Wu, Q.X. Guo, B.J. Shen, Zeolites as shape-selective catalysts: Highly selective synthesis of vanillin from reimer-tiemann reaction of guaiacol and chloroform, Catal. Lett. 145 (2) (2015) 712-714. [2] S. Dabral, J.G. Hernandez, P.C.J. Kamer, C. Bolm, Organocatalytic chemoselective primary alcohol oxidation and subsequent cleavage of lignin model compounds and lignin, ChemSusChem 10 (13) (2017) 2707-2713. [3] A.M. Truscello, C. Gambarotti, M. Lauria, S. Auricchio, G. Leonardi, S.U. Shisodia, A. Citterio, One-pot synthesis of aryloxypropanediols from glycerol: Towards valuable chemicals from renewable sources, Green Chem. 15 (3) (2013) 625-628. [4] J. Chen, W. Shum, A practical synthetic route to enantiopure 3-aryloxy-1, 2-propanediols from chiral glycidol, Tetrahedron Lett. 36 (14) (1995) 2379-2380. [5] Y.Q. Cao, B.G. Pei, Etherification of phenols catalysed by solid-liquid phase transfer catalyst PEG400 without solvent, Synth. Commun. 30 (10) (2000) 1759-1766. [6] A.R. Massah, M. Mosharafian, A.R. Momeni, H. Aliyan, H.J. Naghash, M. Adibnejad, Solvent-free williamson synthesis: An efficient, simple, and convenient method for chemoselective etherification of phenols and bisphenols, Synth. Commun. 37 (11) (2007) 1807-1815. [7] A. Thibon, J.F. Bartoli, R. Guillot, J. Sainton, M. Martinho, D. Mansuy, F. Banse, Non-heme iron polyazadentate complexes as catalysts for aromatic hydroxylation by H2O2: Particular efficiency of tetrakis(2-pyridylmethyl) ethylenediamine-iron(II) complexes, J. Mol. Catal. A Chem. 287 (1-2) (2008) 115-120. [8] D.B. Zhao, N.J. Wu, S. Zhang, P.H. Xi, X.Y. Su, J.B. Lan, J.S. You, Synthesis of phenol, aromatic ether, and benzofuran derivatives by copper-catalyzed hydroxylation of aryl halides, Angew. Chem. Int. Ed Engl. 48 (46) (2009) 8729-8732. [9] K.W. Anderson, T. Ikawa, R.E. Tundel, S.L. Buchwald, The selective reaction of aryl halides with KOH: Synthesis of phenols, aromatic ethers, and benzofurans, J. Am. Chem. Soc. 128 (33) (2006) 10694-10695. [10] J.M. Chen, T.J. Yuan, W.Y. Hao, M.Z. Cai, Simple and efficient CuI/PEG-400 system for hydroxylation of aryl halides with potassium hydroxide, Catal. Commun. 12 (15) (2011) 1463-1465. [11] M.B. Talawar, T.M. Jyothi, P.D. Sawant, T. Raja, B.S. Rao, Calcined Mg-Al hydrotalcite as an efficient catalyst for the synthesis of guaiacol, Green Chem. 2 (6) (2000) 266-268. [12] M.Y. Lui, K.S. Lokare, E. Hemming, J.N.G. Stanley, A. Perosa, M. Selva, A.F. Masters, T. Maschmeyer, Microwave-assisted methylation of dihydroxybenzene derivatives with dimethyl carbonate, RSC Adv. 6 (63) (2016) 58443-58451. [13] A. Dhakshinamoorthy, A. Sharmila, K. Pitchumani, Layered double hydroxide-supported L-methionine-catalyzed chemoselective O-methylation of phenols and esterification of carboxylic acids with dimethyl carbonate: A “green” protocol, Chemistry 16 (4) (2010) 1128-1132. [14] X.M. Zhu, X.M. Li, X.J. Zou, Y.L. Wang, M.J. Jia, W.X. Zhang, Supported ammonium metatungstate as highly efficient catalysts for the vapour-phase O-methylation of catechol with methanol, Catal. Commun. 7 (8) (2006) 579-582. [15] S. Ouk, S. Thiebaud, E. Borredon, P. Le Gars, Dimethyl carbonate and phenols to alkyl aryl ethers via clean synthesis, Green Chem. 4 (5) (2002) 431-435. [16] A.A. Jafari, A. Khodadadi, Y. Mortazavi, Vapor-phase selective o-alkylation of catechol with methanol over lanthanum phosphate and its modified catalysts with Ti and Cs, J. Mol. Catal. A Chem. 372 (2013) 79-83. [17] X.Z. Liao, Z. Zhou, Z.L. Wang, X.J. Zou, G. Liu, M.J. Jia, W.X. Zhang, Preformed precursor of microporous aluminophosphate coating on mesoporous SBA-15: Synthesis, characterization, and catalytic property for selective O-methylation of catechol, J. Colloid Interface Sci. 308 (1) (2007) 176-181. [18] T. Fenlon, S. Chaturvedula, D. Riedel, S. Ruedunauer, R. Pelzer, Method for producing an aroma substance, U.S. Pat, 15/509, 238 (2017). [19] H.B. Chen, J.P. Li, J. Li, Y. Li, W.Q. Hua, J.S. Ding, A preparation method of guaiacol, China Pat., 103709018A (2014). [20] G.F. Zhu, M.H. Chen, A method for producing guaiacol, China Pat., 107235832A (2017). [21] P. Zhang, C.H. Liu, L. Chen, J.M. Chen, Y.J. Guan, P. Wu, Factors influencing the activity of SiO2 supported bimetal Pd-Ni catalyst for hydrogenation of α-angelica lactone: Oxidation state, particle size, and solvents, J. Catal. 351 (2017) 10-18. [22] C. Fan, Y.A. Zhu, Y. Xu, Y. Zhou, X.G. Zhou, D. Chen, Origin of synergistic effect over Ni-based bimetallic surfaces: A density functional theory study, J. Chem. Phys. 137 (1) (2012) 014703. [23] M. Mavrikakis, B. Hammer, J.K. Noerskov, Effect of strain on the reactivity of metal surfaces, Phys. Rev. Lett. 81 (13) (1998) 2819-2822. [24] A.V. Kirilin, A.V. Tokarev, H. Manyar, C. Hardacre, T. Salmi, J.P. Mikkola, D.Y. Murzin, Aqueous phase reforming of xylitol over Pt-Re bimetallic catalyst: Effect of the Re addition, Catal. Today 223 (2014) 97-107. [25] X.L. Li, B.Z. Li, M.H. Cheng, Y.K. Du, X.M. Wang, P. Yang, Catalytic hydrogenation of phenyl aldehydes using bimetallic Pt/Pd and Pt/Au nanoparticles stabilized by cubic silsesquioxanes, J. Mol. Catal. A Chem. 284 (1-2) (2008) 1-7. [26] X.B. Zhang, Z.M. Li, W. Pei, G. Li, W. Liu, P.F. Du, Z. Wang, Z.X. Qin, H.F. Qi, X.Y. Liu, S. Zhou, J.J. Zhao, B. Yang, W.J. Shen, Crystal-phase-mediated restructuring of Pt on TiO2 with tunable reactivity: Redispersion versus reshaping, ACS Catal. 12 (6) (2022) 3634-3643. [27] V. Polshettiwar, D. Cha, X.X. Zhang, J.M. Basset, Cover picture: High-surface-area silica nanospheres (KCC-1) with a fibrous morphology (angew. chem. int. Ed. 50/2010), Angew. Chem. Int. Ed. 49 (50) (2010) 9539. [28] Z.P. Dong, X. Le, X.L. Li, W. Zhang, C.X. Dong, J.T. Ma, Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline, Appl. Catal. B Environ. 158-159 (2014) 129-135. [29] O. Hinrichsen, T. Genger, M. Muhler, Chemisorption of N2O and H2 for the surface determination of copper catalysts, Chem. Eng. Technol. 23 (11) (2000) 956-959. [30] L.F. Wang, H. Chen, M.H. Yuan, S. Rivillon, E.H. Klingenberg, J.X. Li, R.T. Yang, Selective catalytic reduction of nitric oxide by hydrogen over Zn-ZSM-5 and Pd and Pd/Ru based catalysts, Appl. Catal. B Environ. 152-153 (2014) 162-171. [31] J.T. Miller, B.L. Meyers, M.K. Barr, F.S. Modica, D.C. Koningsberger, Hydrogen temperature-programmed desorptions in PlatinumCatalysts: Decomposition and isotopic exchange by SpilloverHydrogen of chemisorbed ammonia, J. Catal. 159 (1) (1996) 41-49. [32] B. Pawelec, R. Mariscal, R.M. Navarro, S. van Bokhorst, S. Rojas, J.L.G. Fierro, Hydrogenation of aromatics over supported Pt-Pd catalysts, Appl. Catal. A Gen. 225 (1-2) (2002) 223-237. [33] S.X. Xia, Z.L. Yuan, L.N. Wang, P. Chen, Z.Y. Hou, Hydrogenolysis of glycerol on bimetallic Pd-Cu/solid-base catalysts prepared via layered double hydroxides precursors, Appl. Catal. A Gen. 403 (1-2) (2011) 173-182. [34] C. Vandergrift, Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles, J. Catal. 131 (1) (1991) 178-189. [35] S. Velu, S. Gangwal, Synthesis of alumina supported nickel nanoparticle catalysts and evaluation of nickel metal dispersions by temperature programmed desorption, Solid State Ion. 177 (7-8) (2006) 803-811. [36] H.L. Liu, Z.W. Huang, H.X. Kang, X.M. Li, C.G. Xia, J. Chen, H.C. Liu, Efficient bimetallic NiCu-SiO2 catalysts for selective hydrogenolysis of xylitol to ethylene glycol and propylene glycol, Appl. Catal. B Environ. 220 (2018) 251-263. [37] B.H. Chen, W. Liu, A. Li, Y.J. Liu, Z.S. Chao, A simple and convenient approach for preparing core-shell-like silica@nickel species nanoparticles: Highly efficient and stable catalyst for the dehydrogenation of 1, 2-cyclohexanediol to catechol, Dalton Trans. 44 (3) (2015) 1023-1038. [38] H.J. Guan, C. Chao, W.X. Kong, Z.G. Hu, Y.F. Zhao, S.G. Yuan, B. Zhang, Magnetic porous PtNi/SiO2 nanofibers for catalytic hydrogenation of p-nitrophenol, J. Nanopart. Res. 19 (6) (2017) 187. [39] S.S. Mahapatra, J. Datta, Characterization of Pt-Pd/C electrocatalyst for methanol oxidation in alkaline medium, Int. J. Electrochem. 2011 (2011) 563495. [40] L.P. Wu, Z.Y. Liu, M. Xu, J. Zhang, X.Y. Yang, Y.D. Huang, J. Lin, D.M. Sun, L. Xu, Y.W. Tang, Facile synthesis of ultrathin Pd-Pt alloy nanowires as highly active and durable catalysts for oxygen reduction reaction, Int. J. Hydrog. Energy 41 (16) (2016) 6805-6813. [41] J. Lif, M. Skoglundh, L. Lowendahl, Sintering of nickel particles supported on γ-alumina in ammonia, Appl. Catal. A Gen. 228 (1-2) (2002) 145-154. [42] H. Jiang, H. Yang, R. Hawkins, Z. Ring, Effect of palladium on sulfur resistance in Pt-Pd bimetallic catalysts, Catal. Today 125 (3-4) (2007) 282-290. [43] G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Surface Area and pore texture of catalysts, Catal. Today 41 (1-3) (1998) 207-219. [44] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (9-10) (2015) 1051-1069. [45] H.J. Qiu, X.C. Dong, B. Sana, T. Peng, D. Paramelle, P. Chen, S. Lim, Ferritin-templated synthesis and self-assembly of Pt nanoparticles on a monolithic porous graphene network for electrocatalysis in fuel cells, ACS Appl. Mater. Interfaces 5 (3) (2013) 782-787. [46] M.H. Luo, P. Lu, W.F. Yao, C.P. Huang, Q.J. Xu, Q. Wu, Y. Kuwahara, H. Yamashita, Shape and composition effects on photocatalytic hydrogen production for Pt-Pd alloy cocatalysts, ACS Appl. Mater. Interfaces 8 (32) (2016) 20667-20674. [47] X.M. Chen, G.H. Wu, J.M. Chen, X. Chen, Z.X. Xie, X.R. Wang, Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide, J. Am. Chem. Soc. 133 (11) (2011) 3693-3695. [48] F.F. Ren, H.W. Wang, C.Y. Zhai, M.S. Zhu, R.R. Yue, Y.K. Du, P. Yang, J.K. Xu, W.S. Lu, Clean method for the synthesis of reduced graphene oxide-supported PtPd alloys with high electrocatalytic activity for ethanol oxidation in alkaline medium, ACS Appl. Mater. Interfaces 6 (5) (2014) 3607-3614. [49] G.L. Zhang, C.D. Huang, R.J. Qin, Z.C. Shao, D. An, W. Zhang, Y.X. Wang, Uniform Pd-Pt alloy nanoparticles supported on graphite nanoplatelets with high electrocatalytic activity towards methanol oxidation, J. Mater. Chem. A 3 (9) (2015) 5204-5211. [50] Q.Q. Guan, C.W. Zhu, Y. Lin, E.I. Vovk, X.H. Zhou, Y. Yang, H.C. Yu, L.N. Cao, H.W. Wang, X.H. Zhang, X.Y. Liu, M.K. Zhang, S.Q. Wei, W.X. Li, J.L. Lu, Bimetallic monolayer catalyst breaks the activity-selectivity trade-off on metal particle size for efficient chemoselective hydrogenations, Nat. Catal. 4 (2021) 840-849. [51] D.L. Zhang, B. Zhaorigetu, Y.S. Bao, Supported palladium nanoparticles catalyzed ortho-directed C-C coupling reaction via a Pd0/PdII/PdIV catalytic cycle, J. Phys. Chem. C 119 (35) (2015) 20426-20432. [52] S. Peng, S. Liu, Q. Chen, S.B. Han, G. Li, W.J. Shen, Silica-confined Pt3Sn clusters for propane dehydrogenation, Ind. Eng. Chem. Res. 62 (33) (2023) 12915-12924. [53] X.J. Wei, Y.J. Zhou, X.N. Sun, F.H. Jiang, J.T. Zhang, Z.Y. Wu, F. Wang, G. Li, Hydrogenation of pentenal over supported Pt nanoparticles: Influence of Lewis-acid sites in the conversion pathway, New J. Chem. 45 (40) (2021) 18881-18887. [54] S. Guo, G.M. Zhang, Z.K. Han, S.Y. Zhang, D. Sarker, W.W. Xu, X.L. Pan, G. Li, A. Baiker, Synergistic effects of ternary PdO-CeO2-OMS-2 catalyst afford high catalytic performance and stability in the reduction of NO with CO, ACS Appl. Mater. Interfaces 13 (1) (2021) 622-630. [55] H.L. Gao, S.J. Liao, Z.X. Liang, H.G. Liang, F. Luo, Anodic oxidation of ethanol on core-shell structured Ru@PtPd/C catalyst in alkaline media, J. Power Sources 196 (15) (2011) 6138-6143. [56] J. Xu, L.K. Ouyang, G.J. Da, Q.Q. Song, X.J. Yang, Y.F. Han, Pt promotional effects on Pd-Pt alloy catalysts for hydrogen peroxide synthesis directly from hydrogen and oxygen, J. Catal. 285 (1) (2012) 74-82. [57] S.Y. Wang, F. Yang, S.P. Jiang, S.L. Chen, X. Wang, Tuning the electrocatalytic activity of Pt nanoparticles on carbon nanotubes via surface functionalization, Electrochem. Commun. 12 (11) (2010) 1646-1649. [58] L. Menendez-Rodriguez, E. Tomas-Mendivil, J. Francos, C. Najera, P. Crochet, V. Cadierno, Palladium(ii) complexes with a phosphino-oxime ligand: Synthesis, structure and applications to the catalytic rearrangement and dehydration of aldoximes, Catal. Sci. Technol. 5 (7) (2015) 3754-3761. |
[1] | Weixiao Ding, Kun Zhao, Shican Jiang, Zhen Huang, Fang He. Ca2MnO4-layered perovskite modified by NaNO3 for chemical-looping oxidative dehydrogenation of ethane to ethylene [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 53-64. |
[2] | Mohamed Mobarak, Saleh Qaysi, Mohamed Saad Ahmed, Yasser F. Salama, Ahmed Mohamed Abbass, Mohamed Abd Elrahman, Hamdy A. Abdel-Gawwad, Moaaz K. Seliem. Insights into the adsorption performance and mechanism of Cr(VI) onto porous nanocomposite prepared from gossans and modified coal interface: Steric, energetic, and thermodynamic parameters interpretations [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 118-128. |
[3] | Wenting Fan, Fang Zhao, Ming Chen, Jian Li, Xuhong Guo. An efficient microreactor with continuous serially connected micromixers for the synthesis of superparamagnetic magnetite nanoparticles [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 85-91. |
[4] | Masoumeh Sheikh Hosseini Lori, Mohammad Delnavaz, Hoda Khoshvaght. Synthesizing and characterizing the magnetic EDTA/chitosan/CeZnO nanocomposite for simultaneous treating of chromium and phenol in an aqueous solution [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 76-88. |
[5] | Jingran Liu, Yue Wu, Jie Tang, Tao Wang, Feng Ni, Qiumin Wu, Xijiao Yang, Ayyaz Ahmad, Naveed Ramzan, Yisheng Xu. Polymeric assembled nanoparticles through kinetic stabilization by confined impingement jets dilution mixer for fluorescence switching imaging [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 89-96. |
[6] | Lianlian Zhao, Fufu Di, Xiaonan Wang, Sumbal Farid, Suzhen Ren. Constructing a hollow core-shell structure of RuO2 wrapped by hierarchical porous carbon shell with Ru NPs loading for supercapacitor [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 93-100. |
[7] | Xueqing Chen, Weiqun Gao, Yan Sun, Xiaoyan Dong. Multiple effects of polydopamine nanoparticles on Cu2+-mediated Alzheimer's β-amyloid aggregation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 144-152. |
[8] | Zhesai Zhao, Qingwen Han, Wenwen He, Xiaolong Han. Preparation of ZIF-8@PEBAX/PVDF nanocomposite membrane by the combination of self-assembly and in-situ growth for removing thiophene from the model gasoline [J]. Chinese Journal of Chemical Engineering, 2023, 64(12): 177-187. |
[9] | Tingcong Wang, Mingyuan Zhu. Effect of boron species on carbon surface on oxidative dehydrogenation of propane [J]. Chinese Journal of Chemical Engineering, 2023, 62(10): 310-317. |
[10] | Lijian Shi, Yaping Zhang, Yujia Tong, Wenlong Ding, Weixing Li. Plant-inspired biomimetic hybrid PVDF membrane co-deposited by tea polyphenols and 3-amino-propyl-triethoxysilane for high-efficiency oil-in-water emulsion separation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 170-180. |
[11] | Baolong Niu, Min Li, Jianhong Jia, Lixuan Ren, Xin Gang, Bin Nie, Yanying Fan, Xiaojie Lian, Wenfeng Li. Preparation and functional study of pH-sensitive amorphous calcium phosphate nanocarriers [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 244-252. |
[12] | Junru Liu, Rui Hu, Xinlei Liu, Qunfeng Zhang, Guanghua Ye, Zhijun Sui, Xinggui Zhou. Modeling of propane dehydrogenation combined with chemical looping combustion of hydrogen in a fixed bed reactor [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 165-173. |
[13] | Yingmeng Zhang, Luting Liu, Qingwei Deng, Wanlin Wu, Yongliang Li, Xiangzhong Ren, Peixin Zhang, Lingna Sun. Hybrid CuO-Co3O4 nanosphere/RGO sandwiched composites as anode materials for lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 185-192. |
[14] | Dongze Ma, Ye Tian, Tiefei He, Xiaobiao Zhu. Preparation of novel magnetic nanoparticles as draw solutes in forward osmosis desalination [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 223-230. |
[15] | Di Gao, Yibo Zhi, Liyuan Cao, Liang Zhao, Jinsen Gao, Chunming Xu, Mingzhi Ma, Pengfei Hao. Influence of zinc state on the catalyst properties of Zn/HZSM-5 zeolite in 1-hexene aromatization and cyclohexane dehydrogenation [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 124-134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||