Chinese Journal of Chemical Engineering ›› 2025, Vol. 84 ›› Issue (8): 227-243.DOI: 10.1016/j.cjche.2025.06.006
• Review • Previous Articles Next Articles
Yuan Tian1, Honghua Zhang2, Yueyang Qiao2, Han Yang2, Yanrong Liu1,2, Xiaoyan Ji3
Received:2025-02-28
Revised:2025-05-29
Accepted:2025-06-11
Online:2025-06-18
Published:2025-08-28
Contact:
Yanrong Liu,E-mail:yrliu@ipe.ac.cn;Xiaoyan Ji,E-mail:xiaoyan.ji@ltu.se
Supported by:Yuan Tian1, Honghua Zhang2, Yueyang Qiao2, Han Yang2, Yanrong Liu1,2, Xiaoyan Ji3
通讯作者:
Yanrong Liu,E-mail:yrliu@ipe.ac.cn;Xiaoyan Ji,E-mail:xiaoyan.ji@ltu.se
基金资助:Yuan Tian, Honghua Zhang, Yueyang Qiao, Han Yang, Yanrong Liu, Xiaoyan Ji. Intelligent prediction of ionic liquids and deep eutectic solvents by machine learning[J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 227-243.
Yuan Tian, Honghua Zhang, Yueyang Qiao, Han Yang, Yanrong Liu, Xiaoyan Ji. Intelligent prediction of ionic liquids and deep eutectic solvents by machine learning[J]. 中国化学工程学报, 2025, 84(8): 227-243.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2025.06.006
| [1] R.D. Rogers, K.R. Seddon, Ionic liquids: solvents of the future? Science 302 (5646) (2003) 792-793. [2] J.S. Wilkes, M.J. Zaworotko, Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids, J. Chem. Soc., Chem. Commun. (13) (1992) 965. [3] M.J. Earle, J.M. Esperanca, M.A. Gilea, J.N. Lopes, L.P. Rebelo, J.W. Magee, K.R. Seddon, J.A. Widegren, The distillation and volatility of ionic liquids, Nature 439 (7078) (2006) 831-834. [4] M. Dinodia, Ionic liquids: environment-friendly greener solvents for organic synthesis, Curr. Org. Synth. (2022). [5] T.H. He, Y.S. Han, B.F. Shi, J.N. Wang, H.H. Yang, Electrode-electrolyte interphases in lithium-based rechargeable batteries with ionic liquid electrolytes: recent advances and future perspectives, J. Mater. Chem. A 12 (47) (2024) 32593-32612. [6] P. Mohapatra, A.K. Barick, Ionic liquids based polymer electrolytes for supercapacitor applications, J. Power Sources 626 (2025)235749. [7] S.M. Li, J.L. Zhang, J. Liu, Y.L. Wang, H.Y. He, Fluid_Thermo database for molecular liquids and ionic liquids and cluster analysis on the liquid thermal conductivity, J. Chem. Eng. Data 69 (12) (2024) 4280-4287. [8] X.K. Hu, Y. Wang, X.N. Feng, L. Wang, M.G. Ouyang, Q. Zhang, Thermal stability of ionic liquids for lithium-ion batteries: a review, Renew. Sustain. Energy Rev. 207 (2025) 114949. [9] N. Baylan, G. Van Eygen, B. Van der Bruggen, Ionic liquid membranes for the separation of phenols, metals, drugs and other compounds from aqueous media: a review of new developments, J. Water Process. Eng. 68 (2024) 106576. [10] H.Y. Shi, Y. Luo, C.Z. Yin, L.M. Ou, Review of the application of ionic liquid systems in achieving green and sustainable recycling of spent lithium-ion batteries, Green Chem. 26 (14) (2024) 8100-8122. [11] A. Gautam, V.B. Khajone, P.R. Bhagat, S. Kumar, D.S. Patle, Metal- and ionic liquid-based photocatalysts for biodiesel production: a review, Environ. Chem. Lett. 21 (6) (2023) 3105-3126. [12] X.Y. Hu, N. Mao, D.Z. Zhao, X. Liu, Q.Q. Sun, H.G. Yang, X.Y. Liu, H.Y. Jia, Ionic liquid driven nanostructure self-assembly in organic mixed ionic-electronic conductors, Green Chem. Eng. 5 (3) (2024) 273-275. [13] Z.Y. Zhao, H. Li, X. Gao, Microwave encounters ionic liquid: synergistic mechanism, synthesis and emerging applications, Chem. Rev. 124 (5) (2024) 2651-2698. [14] A.P. Abbott, D. Boothby, G. Capper, D.L. Davies, R.K. Rasheed, Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids, J. Am. Chem. Soc. 126 (29) (2004) 9142-9147. [15] Y. Chen, Z.W. Yu, Low-melting mixture solvents: extension of deep eutectic solvents and ionic liquids for broadening green solvents and green chemistry, Green Chem. Eng. 5 (4) (2024) 409-417. [16] D.M. Drab, J.L. Shamshina, M. Smiglak, C.C. Hines, D.B. Cordes, R.D. Rogers, A general design platform for ionic liquid ions based on bridged multi-heterocycles with flexible symmetry and charge, Chem. Commun. 46 (20) (2010) 3544-3546. [17] A. Al-Bodour, N. Alomari, A. Gutierrez, S. Aparicio, M. Atilhan, Exploring the thermophysical properties of natural deep eutectic solvents for gas capture applications: a comprehensive review, Green Chem. Eng. 5 (3) (2024) 307-338. [18] T. Zhou, L. Chen, Y.M. Ye, L.F. Chen, Z.W. Qi, H. Freund, K. Sundmacher, An overview of mutual solubility of ionic liquids and water predicted by COSMO-RS, Ind. Eng. Chem. Res. 51 (17) (2012) 6256-6264. [19] C.X. Qi, Z. Song, H.Y. Cheng, L.F. Chen, Z.W. Qi, A systematic COSMO-RS study on mutual solubility of ionic liquids and C6-hydrocarbons, Green Chem. Eng. 5 (1) (2024) 97-107. [20] Y.S. Wei, R.J. Sadus, Equations of state for the calculation of fluid-phase equilibria, AlChE. J. 46 (1) (2000) 169-196. [21] H.S. Majdi, A.B. Faisal Raheem, S. Jasim Abdullah, I. Mourad Mohammed, Y. Yasin, A. Yadav, S.K. Hadrawi, R. Shariyati, Prediction of speed of sound and specific heat capacity of ionic liquids using predictive SAFT-based equation of state, Chem. Eng. Sci. 265 (2023) 118246. [22] R.S. Santiago, M. Aznar, Liquid-liquid equilibrium in ternary ionic liquid systems by UNIFAC: New volume, surface area and interaction parameters. Part II, Fluid Phase Equilib. 303 (2) (2011) 111-114. [23] L.M. Chavez-Islas, R. Vasquez-Medrano, A. Flores-Tlacuahuac, Optimal molecular design of ionic liquids for high-purity bioethanol production, Ind. Eng. Chem. Res. 50 (9) (2011) 5153-5168. [24] Y. Huang, H.F. Dong, X.P. Zhang, C.S. Li, S.J. Zhang, A new fragment contribution-corresponding states method for physicochemical properties prediction of ionic liquids, AlChE. J. 59 (4) (2013) 1348-1359. [25] A. Klamt, Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena, J. Phys. Chem. 99 (7) (1995) 2224-2235. [26] A. Klamt, V. Jonas, T. Burger, J.C.W. Lohrenz, Refinement and parametrization of COSMO-RS, J. Phys. Chem. A 102 (26) (1998) 5074-5085. [27] A. Klamt, F. Eckert, COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids, Fluid Phase Equilib. 172 (1) (2000) 43-72. [28] C.Y. Ling, Y.H. Zhang, Q. Li, X.W. Bai, L. Shi, J.L. Wang, New mechanism for N2 reduction: the essential role of surface hydrogenation, J. Am. Chem. Soc. 141 (45) (2019) 18264-18270. [29] N.O. Feider, S.M. Mahurin, C.L. Do-Thanh, S. Dai, D.E. Jiang, Molecular dynamics simulations of a dicationic ionic liquid for CO2 capture, J. Mol. Liq. 335 (2021) 116163. [30] P.M. Pfluger, F. Glorius, Molecular machine learning, Pure Appl. Chem. 59 (43) (2020)18860-18865. [31] Y.G. Xu, Y.D. Gao, L.B. Su, H.T. Wu, H. Tian, M.J. Zeng, C.Q. Xu, X.W. Zhu, K.B. Liao, High-throughput experimentation and machine learning-assisted optimization of iridium-catalyzed cross-dimerization of sulfoxonium ylides, Angew. Chem. Int. Ed 62 (48) (2023) e202313638. [32] Y.C. Xie, C. Zhang, X.Q. Hu, C. Zhang, S.P. Kelley, J.L. Atwood, J. Lin, Machine learning assisted synthesis of metal-organic nanocapsules, J. Am. Chem. Soc. 142 (3) (2020) 1475-1481. [33] M. May, Eight ways machine learning is assisting medicine, Nat. Med. 27 (1) (2021) 2-3. [34] R.N. Das, K. Roy, Advances in QSPR/QSTR models of ionic liquids for the design of greener solvents of the future, Mol. Divers. 17 (1) (2013) 151-196. [35] B. Sepehri, A review on created QSPR models for predicting ionic liquids properties and their reliability from chemometric point of view, J. Mol. Liq. 297 (2020) 112013. [36] S. Ochi, T. Miyao, K. Funatsu, Structure modification toward applicability domain of a QSAR/QSPR model considering activity/property, Mol. Inform. 36 (12) (2017). DOI:10.1002/minf.201700076. [37] F. Yusuf, T. Olayiwola, C. Afagwu, Application of Artificial Intelligence-based predictive methods in Ionic liquid studies: a review, Fluid Phase Equilib. 531 (2021) 112898. [38] P. Dhakal, J.K. Shah, Developing machine learning models for ionic conductivity of imidazolium-based ionic liquids, Fluid Phase Equilib. 549 (2021) 113208. [39] T. Boldoo, M. Lee, Y.T. Kang, H. Cho, Development of artificial neural network model for predicting dynamic viscosity and specific heat of MWCNT nanoparticle-enhanced ionic liquids with different [HMIM]-cation base agents, J. Mol. Liq. 341 (2021) 117356. [40] T. Lemaoui, A. Boublia, A.S. Darwish, M. Alam, S. Park, B.H. Jeon, F. Banat, Y. Benguerba, I.M. AlNashef, Predicting the surface tension of deep eutectic solvents using artificial neural networks, ACS Omega 7 (36) (2022) 32194-32207. [41] Y. Tian, X.X. Wang, Y.R. Liu, W.P. Hu, Prediction of CO2 and N2 solubility in ionic liquids using a combination of ionic fragments contribution and machine learning methods, J. Mol. Liq. 383 (2023) 122066. [42] Y. Tian, X.X. Wang, Y.R. Liu, W.P. Hu, Prediction of nitrogen solubility in ionic liquids by machine learning methods based on COSMO-derived descriptors, Chem. Eng. Sci. 284 (2024) 119482. [43] J. Li, L.Y. Li, Y.W. Tong, X.N. Wang, Understanding and optimizing the gasification of biomass waste with machine learning, Green Chem. Eng. 4 (1) (2023) 123-133. [44] G.V.S.M. Carrera, M. Nunes da Ponte, L.P.N. Rebelo, Chemoinformatic approaches to predict the viscosities of ionic liquids and ionic liquid-containing systems, Chemphyschem 20 (21) (2019) 2767-2773. [45] D. Jin, H.T. He, L. Sun, Z.X. Zeng, Z. Liu, An integrated ML model for the prediction of the melting points, phase diagrams, and eutectic points of the Type III and V deep eutectic solvents, Chem. Eng. Sci. 306 (2025) 121245. [46] V.N. Vapnik, Statistical learning theory, 1st edition edn. New York: Wiley (1998). [47] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (3) (1995) 273-297. [48] S. Rozas, L. Zamora, C. Benito, M. Atilhan, S. Aparicio, A study on monoterpenoid-based natural deep eutectic solvents, Green Chem. Eng. 4 (1) (2023) 99-114. [49] Z. Song, H.W. Shi, X. Zhang, T. Zhou, Prediction of CO2 solubility in ionic liquids using machine learning methods, Chem. Eng. Sci. 223 (2020) 115752. [50] X. Guo, Z.Y. Wang, Y. Yang, J.H. Zhang, Y.D. Liu, Z.Y. Mu, S.Q. Jiang, C.X. Ren, D. Lv, Y.F. Hu, Z.C. Liu, Highly efficient catalyzed by imidazolium-based dual-sulfonic acid functionalized ionic liquids for liquid phase Beckmann rearrangement: experiments and COSMO-RS calculations, Green Chem. Eng. 5 (1) (2024) 108-118. [51] Y. Jian, Y.Y. Wang, A. Barati Farimani, Predicting CO2 absorption in ionic liquids with molecular descriptors and explainable graph neural networks, ACS Sustainable Chem. Eng. 10 (50) (2022) 16681-16691. [52] P. Valeh-e-Sheyda, M. Faridi Masouleh, P. Zarei-Kia, Prediction of CO2 solubility in pyridinium-based ionic liquids implementing new descriptor-based chemoinformatics models, Fluid Phase Equilib. 546 (2021) 113136. [53] T. Wu, W.L. Li, M.Y. Chen, Y.M. Zhou, Q.Y. Zhang, Prediction of Henry’s law constants of CO2 in imidazole ionic liquids using machine learning methods based on empirical descriptors, Chem. Pap. 75 (4) (2021) 1619-1628. [54] A. Barati-Harooni, A. Najafi-Marghmaleki, A.H. Mohammadi, Efficient estimation of acid gases (CO2 and H2S) absorption in ionic liquids, Int. J. Greenh. Gas Contr. 63 (2017) 338-349. [55] I. Mehraein, S. Riahi, The QSPR models to predict the solubility of CO2 in ionic liquids based on least-squares support vector machines and genetic algorithm-multi linear regression, J. Mol. Liq. 225 (2017) 521-530. [56] T.X. Liu, D.C. Fan, Y.S. Chen, Y.S. Dai, Y.Y. Jiao, P.Z. Cui, Y.L. Wang, Z.Y. Zhu, Prediction of CO2 solubility in ionic liquids via convolutional autoencoder based on molecular structure encoding, AlChE. J. 69 (10) (2023) e18182. [57] Y. Suzuki, D. Kodama, H. Mori, N. Kuroki, F.A. Chowdhury, H. Yamada, CO2/hydrocarbon selectivity of trihexyl(tetradecyl)phosphonium-based ionic liquids, Ind. Eng. Chem. Res. 61 (44) (2022) 16584-16592. [58] K.X. Zhang, J.S. Wu, H. Yoo, Y.J. Lee, Machine learning-based approach for tailor-made design of ionic liquids: application to CO2 capture, Sep. Purif. Technol. 275 (2021) 119117. [59] S.P. Mousavi, R. Nakhaei-Kohani, S. Atashrouz, F. Hadavimoghaddam, A. Abedi, A. Hemmati-Sarapardeh, A. Mohaddespour, Modeling of H2S solubility in ionic liquids: comparison of white-box machine learning, deep learning and ensemble learning approaches, Sci. Rep. 13 (1) (2023) 7946. [60] Y.J. He, A. Yang, C.J. Zou, T.Y. Fan, Q.K. Lan, Y. He, M. Wang, J. Sunarso, Z.Y. Kong, An interpretable surrogate model for H2S solubility forecasting in ionic liquids based on machine learning, Sep. Purif. Technol. 357 (2025) 130061. [61] J. Abdi, M. Hadipoor, S.H. Esmaeili-Faraj, B. Vaferi, A modeling approach for estimating hydrogen sulfide solubility in fifteen different imidazole-based ionic liquids, Sci. Rep. 12 (1) (2022) 4415. [62] H.J. Feng, P.G. Zhang, W. Qin, W.M. Wang, H.J. Wang, Estimation of solubility of acid gases in ionic liquids using different machine learning methods, J. Mol. Liq. 349 (2022) 118413. [63] H.J. Feng, W. Qin, G.W. Hu, H.J. Wang, Intelligent prediction of nitrous oxide capture in designable ionic liquids, Appl. Sci. 13 (12) (2023) 6900. [64] R. Nakhaei-Kohani, S. Atashrouz, F. Hadavimoghaddam, A. Abedi, K. Jabbour, A. Hemmati-Sarapardeh, A. Mohaddespour, Chemical structure and thermodynamic properties based models for estimating nitrous oxide solubility in ionic Liquids: Equations of state and Machine learning approaches, J. Mol. Liq. 367 (2022) 120445. [65] R. Nakhaei-Kohani, S. Atashrouz, F. Hadavimoghaddam, A. Abedi, K. Jabbour, A. Hemmati-Sarapardeh, A. Mohaddespour, Modeling solubility of oxygen in ionic liquids: Chemical structure-based Machine Learning Systems Compared to Equations of State, Fluid Phase Equilib. 566 (2023) 113630. [66] S. Kim, P.A. Thiessen, E.E. Bolton, J. Chen, G. Fu, A. Gindulyte, L.Y. Han, J. He, S.Q. He, B.A. Shoemaker, J.Y. Wang, B. Yu, J. Zhang, S.H. Bryant, PubChem substance and compound databases, Nucleic Acids Res. 44 (D1) (2016) D1202-D1213. [67] P.H. Wei, X.J. Pan, C.Y. Chen, H.Y. Li, X.L. Yan, C.J. Li, Y.H. Chu, B. Yan, Emerging impacts of ionic liquids on eco-environmental safety and human health, Chem. Soc. Rev. 50 (24) (2021) 13609-13627. [68] Z.H. Wang, Z. Song, T. Zhou, Machine learning for ionic liquid toxicity prediction, Processes 9 (1) (2021) 65. [69] D.C. Fan, K. Xue, R.Q. Zhang, W.G. Zhu, H.R. Zhang, J.G. Qi, Z.Y. Zhu, Y.L. Wang, P.Z. Cui, Application of interpretable machine learning models to improve the prediction performance of ionic liquids toxicity, Sci. Total Environ. 908 (2024) 168168. [70] X.R. Wu, J.X. Gong, S.Y. Ren, F. Tan, Y. Wang, H.X. Zhao, A machine learning-based QSAR model reveals important molecular features for understanding the potential inhibition mechanism of ionic liquids to acetylcholinesterase, Sci. Total Environ. 915 (2024) 169974. [71] R.N. Guan, N.Q. Li, R.T. Cai, B.B. Guo, Q.Y. Wang, D.Q. Li, C.Y. Zhao, Toxicity assessment and i-QSTTR analysis of ionic liquids on D. Magna, D. rerio, and R. subcapitata, Sci. Total Environ. 958 (2025) 178029. [72] M. Scheuren, L. Teodoro, A. Witters, M. Musozoda, C. Adu, G. Guillet, R. Freeze, M. Zeller, A. Mirjafari, P.C. Hillesheim, Planting the seeds of a decision tree for ionic liquids: steric and electronic impacts on melting points of triarylphosponium ionic liquids, J. Phys. Chem. B 128 (24) (2024) 5895-5907. [73] H.J. Feng, L.L. Qin, B.X. Zhang, J. Zhou, Prediction and interpretability of melting points of ionic liquids using graph neural networks, ACS Omega 9 (14) (2024) 16016-16025. [74] Z. Acar, P. Nguyen, K.C. Lau, Machine-learning model prediction of ionic liquids melting points, Appl. Sci. 12 (5) (2022) 2408. [75] K. Baran, A. Kloskowski, Graph neural networks and structural information on ionic liquids: a cheminformatics study on molecular physicochemical property prediction, J. Phys. Chem. B 127 (49) (2023) 10542-10555. [76] W. Beckner, C.M. Mao, J. Pfaendtner, Statistical models are able to predict ionic liquid viscosity across a wide range of chemical functionalities and experimental conditions, Mol. Syst. Des. Eng. 3 (1) (2018) 253-263. [77] S. Kiani, F. Hadavimoghaddam, S. Atashrouz, D. Nedeljkovic, A. Hemmati-Sarapardeh, A. Mohaddespour, Modeling of ionic liquids viscosity via advanced white-box machine learning, Sci. Rep. 14 (1) (2024) 8666. [78] L.Y. Ran, Z. Wang, B. Yang, A. Amiri-Margavi, N. Alshahrani, Development of novel computational models based on artificial intelligence technique to predict the viscosity of ionic liquids-water mixtures, Case Stud. Therm. Eng. 54 (2024) 104076. [79] E. Szliszka, Z.P. Czuba, M. Domino, B. Mazur, G. Zydowicz, W. Krol, Ethanolic extract of propolis (EEP) enhances the apoptosis- inducing potential of TRAIL in cancer cells, Molecules 14 (2) (2009) 738-754. [80] B. Huwaimel, J. Alanazi, M. Alanazi, T.N. Alharby, F. Alshammari, Computational models based on machine learning and validation for predicting ionic liquids viscosity in mixtures, Sci. Rep. 14 (1) (2024) 31857. [81] R. Nakhaei-Kohani, S. Ali Madani, S.P. Mousavi, S. Atashrouz, A. Abedi, A. Hemmati-Sarapardeh, A. Mohaddespour, Machine learning assisted Structure-based models for predicting electrical conductivity of ionic liquids, J. Mol. Liq. 362 (2022) 119509. [82] C.C. Song, C.Y. Wang, F. Fang, G.B. Zhou, Z.Y. Dai, Z. Yang, Large-scale screening for high conductivity ionic liquids via machine learning algorithm utilizing graph neural network-based features, J. Chem. Eng. Data 69 (12) (2024) 4310-4319. [83] Z.X. Chen, J.H. Chen, Y.X. Qiu, J. Cheng, L. Chen, Z.W. Qi, Z. Song, Prediction of electrical conductivity of ionic liquids: from COSMO-RS derived QSPR evaluation to boosting machine learning, ACS Sustainable Chem. Eng. 12 (17) (2024) 6648-6658. [84] W.G. Zhu, R.Q. Zhang, H. Liu, L.L. Xin, J.H. Zhong, H.R. Zhang, J.G. Qi, Y.L. Wang, Z.Y. Zhu, Prediction of ionic liquid surface tension via a generalized interpretable Structure-Surface Tension Relationship model, AlChE. J. 70 (11) (2024) e18558. [85] W. Benmouloud, C. Si-Moussa, O. Benkortbi, Machine learning approach for the prediction of surface tension of binary mixtures containing ionic liquids using σ-profile descriptors, Int. J. Quantum Chem. 123 (3) (2023) e27026. [86] M.A.S. Abourehab, A.M. Shawky, K. Venkatesan, S. Yasmin, A.M. Alsubaiyel, K.M. AboRas, Efficiency development of surface tension for different ionic liquids through novel model of Machine learning Technique: Application of in-thermal engineering, J. Mol. Liq. 367 (2022) 120391. [87] R.J. Obaid, H. Kotb, A.M. Alsubaiyel, J. Uddin, M. Sani Sarjad, M.L. Rahman, S.A. Ahmed, Novel and accurate mathematical simulation of various models for accurate prediction of surface tension parameters through ionic liquids, Arab. J. Chem. 15 (11) (2022) 104228. [88] Y.X. Fu, Y.Q. Chen, C.T. Zhang, Y. Lei, X.Y. Liu, Prediction surface tension of ionic liquid-water mixtures using a hybrid group contribution and artificial neural network method, Fluid Phase Equilib. 563 (2023) 113571. [89] Y.X. Fu, X.Y. Liu, J.Z. Gao, Y. Lei, Y.Q. Chen, X.P. Zhang, Machine learning models for the density and heat capacity of ionic liquid-water binary mixtures, Chin. J. Chem. Eng. 73 (2024) 244-255. [90] X.Y. Liu, J.Z. Gao, Y.Q. Chen, Y.X. Fu, Y. Lei, Machine learning-assisted modeling study on the density and heat capacity of ionic liquid-organic solvent binary systems, J. Mol. Liq. 390 (2023) 122972. [91] Y. Lei, S.L. Ma, L. Du, X.Y. Liu, X.Q. Wu, X.D. Liang, G.M. Kontogeorgis, Y.Q. Chen, Modeling study on the density and viscosity of ionic liquid-organic solvent-water ternary mixtures, Ind. Eng. Chem. Res. 63 (23) (2024) 10444-10455. [92] Z. Song, J.H. Chen, J. Cheng, G.Z. Chen, Z.W. Qi, Computer-aided molecular design of ionic liquids as advanced process media: a review from fundamentals to applications, Chem. Rev. 124 (2) (2024) 248-317. [93] Y.R. Sui, C. Zhai, W. Wu, M.K.H. Leung, Multi-scale Computer-aided molecular design of Ionic liquid for absorption heat transformer based on Machine learning, Energy Convers. Manag. 261 (2022) 115617. [94] T. Lemaoui, T. Eid, A.S. Darwish, H.A. Arafat, F. Banat, I. AlNashef, Revolutionizing inverse design of ionic liquids through the multi-property prediction of over 300, 000 novel variants using ensemble deep learning, Mater. Sci. Eng. R Rep. 159 (2024) 100798. [95] X.Y. Liu, J.C. Chu, S.X. Huang, A. Li, S.L. Wang, M.G. He, Machine learning-based design of ionic liquids at the atomic scale for highly efficient CO2 capture, ACS Sustainable Chem. Eng. 11 (24) (2023) 8978-8987. [96] S. Mohammed, F. Eljack, M.K. Kazi, M. Atilhan, Development of a deep learning-based group contribution framework for targeted design of ionic liquids, Comput. Chem. Eng. 186 (2024) 108715. [97] K. Wang, H.J. Xu, C. Yang, T. Qiu, Machine learning-based ionic liquids design and process simulation for CO2 separation from flue gas, Green Energy Environ. 6 (3) (2021) 432-443. [98] X.Y. Kong, J. Cheng, W. Meng, S.J. Han, Z. Song, Z.W. Qi, Multilevel screening of ionic liquid absorbents for the capture of low-content styrene VOC, Chem. Eng. Res. Des. 203 (2024) 742-749. [99] Y.R. Sui, C. Zhai, H.S. Lin, W. Wu, How to rationally screen refrigerant/ionic liquids for thermal cooling: a multi-criteria approach based on machine learning, Energy Convers. Manag. 282 (2023) 116853. [100] X.Y. Liu, J.C. Chu, Z.W. Zhang, M.G. He, Data-driven multi-objective molecular design of ionic liquid with high generation efficiency on small dataset, Mater. Des. 220 (2022) 110888. [101] M. Amereh, A.E. Gorji, M.A. Sobati, Molecular insights on the solvent screening for the benzene extraction from fuels using ionic liquids via QSPR method, Sci. Rep. 14 (2024) 30718. [102] Y.Q. Chen, S.L. Ma, Y. Lei, X.D. Liang, X.Y. Liu, G.M. Kontogeorgis, R. Gani, Ionic liquid binary mixtures: Machine learning-assisted modeling, solvent tailoring, process design, and optimization, AlChE. J. 70 (5) (2024) e18392. [103] J.C. Munyemana, J. Chen, X. Li, Y.X. Han, H. Tang, H.D. Qiu, Deep eutectic solvent-driven self-assembly of metal mercaptide complexes with enzyme-mimicking activities for detection of uric acid through one-step cascade catalytic reaction, Green Chem. Eng. 5 (1) (2024) 75-84. [104] P. Xu, G.W. Zheng, M.H. Zong, N. Li, W.Y. Lou, Recent progress on deep eutectic solvents in biocatalysis, Bioresour. Bioprocess. 4 (1) (2017) 34. [105] A.T.N. Fajar, T. Hanada, A.D. Hartono, M. Goto, Estimating the phase diagrams of deep eutectic solvents within an extensive chemical space, Commun. Chem. 7 (1) (2024) 27. [106] P. Cysewski, T. Jelinski, M. Przybylek, Exploration of the solubility hyperspace of selected active pharmaceutical ingredients in choline- and betaine-based deep eutectic solvents: machine learning modeling and experimental validation, Molecules 29 (20) (2024) 4894. [107] T. Jelinski, M. Przybylek, R. Rozalski, K. Romanek, D. Wielewski, P. Cysewski, Tuning ferulic acid solubility in choline-chloride- and betaine-based deep eutectic solvents: experimental determination and machine learning modeling, Molecules 29 (16) (2024) 3841. [108] T. Jelinski, M. Przybylek, R. Rozalski, P. Cysewski, Solubility of dapsone in deep eutectic solvents: Experimental analysis, molecular insights and machine learning predictions, Polim. Med. 54 (1) (2024) 15-25. [109] L.P. Liao, Z. Sofer, P. Li, E. Kovalska, Performance evaluation of advanced machine learning methodologies in simulating hydrogen chloride (HCl) absorption by deep eutectic solvents, J. Environ. Chem. Eng. 12 (3) (2024) 113011. [110] H.L. Jin, Y.G. Kim, Z.R. Jin, C.Y. Fan, Machine learning assisted prediction of the nitric oxide (NO) solubility in various deep eutectic solvents, J. Ind. Inf. Integr. 43 (2025) 100741. [111] X.L. Zhu, M. Khosravi, B. Vaferi, M. Nait Amar, M.A. Ghriga, A.H. Mohammed, Application of machine learning methods for estimating and comparing the sulfur dioxide absorption capacity of a variety of deep eutectic solvents, J. Clean. Prod. 363 (2022) 132465. [112] D.M. Makarov, Y.A. Fadeeva, V.A. Golubev, A.M. Kolker, Designing deep eutectic solvents for efficient CO2 capture: a data-driven screening approach, Sep. Purif. Technol. 325 (2023) 124614. [113] M. Mohan, O.N. Demerdash, B.A. Simmons, S. Singh, M.K. Kidder, J.C. Smith, Physics-based machine learning models predict carbon dioxide solubility in chemically reactive deep eutectic solvents, ACS Omega 9 (17) (2024) 19548-19559. [114] M. Mohan, O. Demerdash, B.A. Simmons, J.C. Smith, M. K. Kidder, S. Singh, Accurate prediction of carbon dioxide capture by deep eutectic solvents using quantum chemistry and a neural network, Green Chem. 25 (9) (2023) 3475-3492. [115] J.W. Wang, Z. Song, L.F. Chen, T. Xu, L.Y. Deng, Z.W. Qi, Prediction of CO2 solubility in deep eutectic solvents using random forest model based on COSMO-RS-derived descriptors, Green Chem. Eng. 2 (4) (2021) 431-440. [116] R. Soleimani, A.H. Saeedi Dehaghani, Unveiling CO2 capture in tailorable green neoteric solvents: an ensemble learning approach informed by quantum chemistry, J. Environ. Manage. 354 (2024) 120298. [117] G. Hernandez Morales, E.I. Sanchez Medina, A. Jimenez-Gutierrez, V.M. Zavala, Graph neural networks for CO2 solubility predictions in Deep Eutectic Solvents, Comput. Chem. Eng. 187 (2024) 108750. [118] X.J. Hou, L.Y. Yu, C.H. He, K.J. Wu, Group and group-interaction contribution method for estimating the melting temperatures of deep eutectic solvents, AlChE. J. 68 (2) (2022) e17408. [119] A.K. Lavrinenko, I.Y. Chernyshov, E.A. Pidko, Machine learning approach for the prediction of eutectic temperatures for metal-free deep eutectic solvents, ACS Sustainable Chem. Eng. 11 (42) (2023) 15492-15502. [120] A. Ravichandran, S. Honrao, S. Xie, E. Fonseca, J.W. Lawson, Computational design of low melting eutectics of molten salts: a combined machine learning and thermodynamic modeling approach, J. Phys. Chem. Lett. 15 (1) (2024) 121-126. [121] L.B. Ayres, M. Bandara, C.D. McMillen, W.T. Pennington, C.D. Garcia, eutXG: a machine-learning model to understand and predict the melting point of novel X-bonded deep eutectic solvents, ACS Sustainable Chem. Eng. 12 (30) (2024) 11260-11273. [122] M. Abdollahzadeh, M. Khosravi, B. Hajipour Khire Masjidi, A. Samimi Behbahan, A. Bagherzadeh, A. Shahkar, F. Tat Shahdost, Estimating the density of deep eutectic solvents applying supervised machine learning techniques, Sci. Rep. 12 (1) (2022) 4954. [123] A. Roosta, R. Haghbakhsh, A.R.C. Duarte, S. Raeissi, Machine learning coupled with group contribution for predicting the density of deep eutectic solvents, Fluid Phase Equilib. 565 (2023) 113672. [124] Y.X. Wang, X.J. Hou, J. Zeng, K.J. Wu, Y.C. He, Random forest models to predict the densities and surface tensions of deep eutectic solvents, AlChE. J. 69 (7) (2023) e18095. [125] D.Y. Shi, F.Y. Zhou, W.B. Mu, C. Ling, T.C. Mu, G.Q. Yu, R.Q. Li, Deep insights into the viscosity of deep eutectic solvents by an XGBoost-based model plus SHapley Additive exPlanation, Phys. Chem. Chem. Phys. 24 (42) (2022) 26029-26036. [126] L.Y. Yu, G.P. Ren, X.J. Hou, K.J. Wu, Y.C. He, Transition state theory-inspired neural network for estimating the viscosity of deep eutectic solvents, ACS Cent. Sci. 8 (7) (2022) 983-995. [127] A. Roosta, R. Haghbakhsh, A.R.C. Duarte, S. Raeissi, Deep eutectic solvent viscosity prediction by hybrid machine learning and group contribution, J. Mol. Liq. 388 (2023) 122747. [128] H. Liu, H.W. Xu, W.G. Zhu, Y. Zhou, K. Xue, Z.Y. Zhu, Y.L. Wang, J.G. Qi, Prediction of the viscosity of green deep eutectic solvents by constructing ensemble model based on machine learning, Chem. Eng. Sci. 304 (2025) 120987. [129] A. Bagherzadeh, N. Shahini, D. Saber, P. Yousefi, S.M. Seyed Alizadeh, S. Ahmadi, F. Tat Shahdost, Developing a global approach for determining the molar heat capacity of deep eutectic solvents, Measurement 188 (2022) 110630. [130] K. Khedri, A. Roosta, R. Haghbakhsh, S. Raeissi, Novel predictive models for the heat capacity of deep eutectic solvents using coupled atomic/group contributions and machine learning methods, Ind. Eng. Chem. Res. 64 (1) (2025) 823-832. [131] A.S. Darwish, R. Abu Alwan, A. Boublia, T. Lemaoui, Y. Benguerba, I.M. AlNashef, F. Banat, Machine learning approach for mapping the heat capacity of deep eutectic solvents for sustainable energy applications, Fuel 381 (2025) 133278. [132] D.O. Abranches, E.J. Maginn, Y.J. Colon, Activity coefficient acquisition with thermodynamics-informed active learning for phase diagram construction, AlChE. J. 69 (8) (2023) e18141. [133] J.Z. Li, J.L. Anderson, E.A. Smith, Determination of infinite dilution activity coefficients of molecular solutes in ionic liquids and deep eutectic solvents by factorization-machine-based neural networks, ACS Sustainable Chem. Eng. 10 (42) (2022) 13927-13935. [134] T. Lemaoui, A.S. Darwish, G. Almustafa, A. Boublia, P.R. Sarika, N. Abdel Jabbar, T. Ibrahim, P. Nancarrow, K.K. Yadav, A.M. Fallatah, M. Abbas, J.S. Algethami, Y. Benguerba, B.H. Jeon, F. Banat, I.M. AlNashef, Machine learning approach to map the thermal conductivity of over 2, 000 neoteric solvents for green energy storage applications, Energy Storage Mater. 59 (2023) 102795. [135] Z. Song, J.H. Chen, H. Qin, Z.W. Qi, K. Sundmacher, Extending UNIFAC models for solid-liquid equilibria prediction and design of eutectic solvent systems, Chem. Eng. Sci. 281 (2023) 119097. [136] P.V.A. Pontes, E.A. Crespo, M.A.R. Martins, L.P. Silva, C.M.S.S. Neves, G.J. Maximo, M.D. Hubinger, E.A.C. Batista, S.P. Pinho, J.A.P. Coutinho, G. Sadowski, C. Held, Measurement and PC-SAFT modeling of solid-liquid equilibrium of deep eutectic solvents of quaternary ammonium chlorides and carboxylic acids, Fluid Phase Equilib. 448 (2017) 69-80. [137] D. Peng, A. Alhadid, M. Minceva, Assessment of COSMO-SAC predictions for solid-liquid equilibrium in binary eutectic systems, Ind. Eng. Chem. Res. 61(35) (2022)13256-13264. [138] P. Cysewski, T. Jelinski, M. Przybylek, A.N. Mai, J. Kulak, Experimental and machine-learning-assisted design of pharmaceutically acceptable deep eutectic solvents for the solubility improvement of non-selective COX inhibitors ibuprofen and ketoprofen, Molecules 29 (10) (2024) 2296. [139] L.B. Ayres, F.J.V. Gomez, M.F. Silva, J.R. Linton, C.D. Garcia, Predicting the formation of NADES using a transformer-based model, Sci. Rep. 14 (2024) 2715. [140] R.K. Luu, M. Wysokowski, M.J. Buehler, Generative discovery of de novo chemical designs using diffusion modeling and transformer deep neural networks with application to deep eutectic solvents, 122 (23) (2023) 234103. [141] D.O. Abranches, W. Dean, M. Munoz, W. Wang, Y.G. Liang, B. Gurkan, E.J. Maginn, Y.J. Colon, Combining high-throughput experiments and active learning to characterize deep eutectic solvents, ACS Sustain. Chem. Eng. 12 (38) (2024) 14218-14229. |
| [1] | Ali Tarik Karagoz, Omar Alqusair, Chao Liu, Jie Li. Advances in conceptual process design: From conventional strategies to AI-assisted methods [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 60-76. |
| [2] | Dian Zhang, Bo Ouyang, Zheng-Hong Luo. Reaction process optimization based on interpretable machine learning and metaheuristic optimization algorithms [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 77-85. |
| [3] | Zhi Ma, Peng Cui, Xu Wang, Lanyu Li, Haoxiang Xu, Adrian Fisher, Daojian Cheng. The integration of artificial intelligence and high-throughput experiments: An innovative driving force in catalyst design [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 117-132. |
| [4] | Jianfeng Jiao, Xi Gao, Jie Li. Pure component property estimation framework using explainable machine learning methods [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 158-178. |
| [5] | Haijun Feng, Li Jiajia, Zhou Jian. Prediction of ionic liquid toxicity by interpretable machine learning [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 201-210. |
| [6] | Feifei Chen, Zhenyuan Xiao, Zhongfan Luo, Peng Jiang, Jingjing Chen, Yuanhui Ji, Jiahua Zhu, Xiaohua Lu, Liwen Mu. Prediction of mass transfer performance in gas-liquid stirred bioreactor using machine learning [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 211-226. |
| [7] | Yongqi Pan, Yazi Yu, Lijie Wang, Guogang Hu, Yujun Wang, Guangsheng Luo. Intelligent chemical synthesis based on microchemical engineering technology [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 274-288. |
| [8] | Shixian Fang, Ying Chen, Yutong Qian, Shulin Wang, Xiangchun Liu, Ping Cui. Mechanism of extracting poorly-caking components from Shenhua long-flame coal using [N4441][Cl] [J]. Chinese Journal of Chemical Engineering, 2025, 81(5): 57-63. |
| [9] | Zhe Ding, Li Guo, Fang Bai, Chao Hua, Ping Lu, Jinyi Chen. Toward the rational design for low-temperature hydrogenation of silicon tetrachloride: Mechanism and data-driven interpretable descriptor [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 172-184. |
| [10] | Mingqi Jiang, Zhuo Wang, Zhijian Sun, Jian Wang. A parallel chemical reaction optimization method based on preference-based multi-objective expected improvement [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 82-92. |
| [11] | Yixin Wei, Leyu Shan, Tong Qiu, Diannan Lu, Zheng Liu. Machine learning-assisted retrosynthesis planning: Current status and future prospects [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 273-292. |
| [12] | Fei Li, Tao Zhang, Li Lv, Wenxiang Tang, Yan Wang, Shengwei Tang. Effects of ionic liquids on the vapor-liquid equilibriumof 1,3,5-trioxane-water system at 101.3 kPa [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 42-50. |
| [13] | Yingxue Fu, Xinyan Liu, Jingzi Gao, Yang Lei, Yuqiu Chen, Xiangping Zhang. Machine learning models for the density and heat capacity of ionic liquid-water binary mixtures [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 244-255. |
| [14] | Yumiao Lu, Weilu Ding, Kun Li, Yanlei Wang, Bobo Cao, Ruirui He, Hongyan He. Direct observation of ordered-disordered structural transition of MoS2-confined ionic liquids [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 126-132. |
| [15] | Pengzhi Bei, Rui Zhang, Jie Feng, Antony Rajendran, Wenying Li. Optimizing extractants selection for efficient separation of phenols and nitrogen-containing heteroaromatics using hydrogen bond interaction strategies [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 43-52. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010102001993号 
