[1] E. Palazzi, F. Curro, B. Fabiano, A critical approach to safety equipment and emergency time evaluation based on actual information from the Bhopal gas tragedy, Process. Saf. Environ. Prot. 97 (2015) 37-48. [2] J.E. Ten Hoeve, M.Z. Jacobson, Worldwide health effects of the Fukushima Daiichi nuclear accident, Energy Environ. Sci. 5 (9) (2012) 8743-8757. [3] X. Luo, X.Y. Feng, X. Ji, Y.G. Dang, L. Zhou, K.X. Bi, Y.Y. Dai, Extraction and analysis of risk factors from Chinese chemical accident reports, Chin. J. Chem. Eng. 61 (2023) 68-81. [4] S. Lyu, S.H. Zhang, X.M. Huang, S.N. Peng, J. Li, Investigation and modeling of the LPG tank truck accident in Wenling, China, Process. Saf. Environ. Prot. 157 (2022) 493-508. [5] M. Hutchinson, H. Oh, W.H. Chen, A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors, Inf. Fusion 36 (2017) 130-148. [6] D. He, W.P. Yan, Influences of different diluents on ignition delay of syngas at gas turbine conditions: a numerical study, Chin. J. Chem. Eng. 25 (1) (2017) 79-88. [7] A.M. Idris, R. Rusli, M.E. Mohamed, A.F. Ramli, M.S. Nasif, J.S. Lim, Explosion pressure and duration prediction using machine learning: a comparative study using classical models with Adam-optimized neural network, Can. J. Chem. Eng. 103 (1) (2025) 137-152. [8] A. Filice, M. Mynarz, R. Zinno, Experimental and empirical study for prediction of blast loads, Appl. Sci. 12 (5) (2022) 2691. [9] A.C. van den Berg, The multi-energy method A framework for vapour cloud explosion blast prediction, J. Hazard. Mater. 12 (1) (1985) 1-10. [10] R.I. Tsukada, D.A. Shiguemoto, S.S.V. Vianna, The TNO multi-energy method combined to mathematical programming and computational fluid dynamics for optimisation of gas detectors, J. Loss Prev. Process. Ind. 83 (2023) 105035. [11] H. Zhou, C. Zheng, X.S. Yue, Z.H. Zhu, A.G. Lu, X.S. Kong, W.G. Wu, TNT equivalency method in confined space based on steel plate deformation, Int. J. Impact Eng. 178 (2023) 104587. [12] W.F. Xiao, M. Andrae, N. Gebbeken, Air blast TNT equivalence factors of high explosive material PETN for bare charges, J. Hazard. Mater. 377 (2019) 152-162. [13] R.A. Strehlow, W.E. Baker, The characterization and evaluation of accidental explosions, Prog. Energy Combust. Sci. 2 (1) (1976) 27-60. [14] X. Rocourt, I. Sochet, B. Pellegrinelli, Application of the TNO multi-energy and Baker-Strehlow-Tang methods to predict hydrogen explosion effects from small-scale experiments, J. Loss Prev. Process. Ind. 81 (2023) 104976. [15] P. Lei, Z. Qi, Influence of vapor cloud shape on temperature field of unconfined vapor cloud explosion, Chin. J. Chem. Eng. 18 (1) (2010) 164-169. [16] Z.R. Lin, S.F. Wang, S.X. Fu, J.P. Huo, Numerical study on effects of the cofferdam area in liquefied natural gas storage tank on the leakage and diffusion characteristics of natural gas, Chin. J. Chem. Eng. 29 (2021) 228-241. [17] N.H. Alam, E. Kashi, R. Habibpour, Computational fluid dynamics simulation of gas dispersion in complex facilities using Kit Fox field experiments: Validation and statistical evaluation, Chin. J. Chem. Eng. 44 (2022) 412-423. [18] O.R. Hansen, E.S. Hansen, CFD-modelling of large-scale LH2 release and explosion experiments, Process. Saf. Environ. Prot. 174 (2023) 376-390. [19] G. Momferatos, S.G. Giannissi, I.C. Tolias, A.G. Venetsanos, A. Vlyssides, N. Markatos, Vapor cloud explosions in various types of confined environments: CFD analysis and model validation, J. Loss Prev. Process. Ind. 75 (2022) 104681. [20] M. Dhiman, A. Zambare, P. Sathiah, V.D. Narasimhamurthy, CFD simulations of vapour cloud explosions using PDRFoam, J. Loss Prev. Process. Ind. 85 (2023) 105164. [21] D.L. Ma, Z.X. Zhang, Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere, J. Hazard. Mater. 311 (2016) 237-245. [22] K. Zhang, K. Zhang, R. Bao, Prediction of gas explosion pressures: a machine learning algorithm based on KPCA and an optimized LSSVM, J. Loss Prev. Process. Ind. 83 (2023) 105082. [23] Q.L. Wang, J.Q. Han, F. Chen, X. Zhang, C. Yun, Z. Dou, T.J. Yan, G.A. Yang, Real-time risk prediction of chemical processes based on attention-based Bi-LSTM, Chin. J. Chem. Eng. 75 (2024) 131-141. [24] Y. Xu, Y.M. Huang, G.W. Ma, A beetle antennae search improved BP neural network model for predicting multi-factor-based gas explosion pressures, J. Loss Prev. Process. Ind. 65 (2020) 104117. [25] S.N. Zhou, Z.Q. Wang, Q.Z. Li, A fusing NS with NN model for the consequence prediction of vapor cloud explosion, Process. Saf. Environ. Prot. 149 (2021) 698-710. [26] Y.M. Bai, S.Y. Xiang, F.F. Cheng, J.S. Zhao, A dynamic-inner LSTM prediction method for key alarm variables forecasting in chemical process, Chin. J. Chem. Eng. 55 (2023) 266-276. [27] S.W. Xiong, L. Zhou, Y.Y. Dai, X. Ji, Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis, Chin. J. Chem. Eng. 56 (2023) 1-14. [28] I. Sutskever, O. Vinyals, Q.V. Le, Sequence to sequence learning with neural networks, Adv. Neural Inf. Process. Syst. 4 (January) (2014) 3104-3112. [29] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate, In: ICLR 2015, San Diego, CA, USA,2015 . [30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, In: Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach California USA,2017. [31] Z.L. Yang, Z.H. Dai, Y.M. Yang, J. Carbonell, R. Salakhutdinov, Q.V. Le, XLNet: Generalized autoregressive pretraining for language understanding, In: Conference on Neural Information Processing Systems, Vancouver, Canada, 2019. [32] Y. Mouilleau, A. Champassith, CFD simulations of atmospheric gas dispersion using the Fire Dynamics Simulator (FDS), J. Loss Prev. Process. Ind. 22 (3) (2009) 316-323. [33] T.S. Shen, Y.H. Huang, S.W. Chien, Using fire dynamic simulation (FDS) to reconstruct an arson fire scene, Build. Environ. 43 (6) (2008) 1036-1045. [34] J. Wahlqvist, P. van Hees, Validation of FDS for large-scale well-confined mechanically ventilated fire scenarios with emphasis on predicting ventilation system behavior, Fire Saf. J. 62 (2013) 102-114. [35] J.F. Chen, J.J. Liu, X.L. Tian, L. Zhang, H.H. Cheng, M.H. Zhong, Study on the effect of obstacles on smoke diffusion and airflow structure in subway stations, Build. Environ. 242 (2023) 110553. [36] Vinay, S. Raja, S.M. Tauseef, S. Varadharajan, Investigating the impact of oxygen concentration on fire dynamics using numerical simulation with FDS, Process. Saf. Environ. Prot. 178 (2023) 195-203. |