1 Lee, D.S., Park, J.M., Vanrolleghem, P.A., “Adaptive multiscale principal component analysis for on-line monitoring of a sequencing batch reactor”, J. Biotechnol., 116 (2), 195-210 (2005). 2 Nomikos, P., MacGregor, J.F., “Multivariate SPC charts for monitoring batch processes”, Technometrics, 37 (1), 41-59 (1995). 3 Nomikos, P., MacGregor, J.F., “Multi-way partial least squares in monitoring batch processes”, Chemom. Intell. Lab. Syst., 30 (1), 97-108 (1995). 4 Dong, D., McAvoy, T.J., “Batch tracking via nonlinear principal component analysis”, AIChE J., 42 (8), 2199-2208 (1996). 5 Lee, J.M., Yoo, C., Lee, I.B., “Fault detection of batch processes using multiway kernel principal component analysis”, Comput. Chem. Eng., 28 (9), 1837-1847 (2004). 6 Li, R.Y., Rong, G., “Fault isolation by partial dynamic principal component analysis in dynamic process”, Chin. J. Chem. Eng., 14 (4), 486-493 (2006). 7 Bakshi, B.R., “Multiscale PCA with application to multivariate statistical process monitoring”, AIChE. J., 44 (7), 1596-1610 (1998). 8 Wang, D., Romagnoli, J.A., “Robust multi-scale principal component analysis with applications to process monitoring”, J. Process Contr., 15 (8), 869-882 (2005). 9 Ränner, S., MacGregor, J.F., Wold, S., “Adaptive batch monitoring using hierarchical PCA”, Chemom. Intell. Lab. Syst., 41 (1), 73-81 (1998). 10 Lee, D.S., Vanrolleghem, P.A., “Monitoring of a sequencing batch reactor using adaptive multiblock principal component analysis”, Biotechnol. Bioeng., 82 (4), 489-497 (2003). 11 MacGregor, J.F., Jaeckle, C., Kiparissides, C., Koutoudi, M., “Process monitoring and diagnosis by multiblock PLS methods”, AIChE. J., 40 (5), 826-838 (1994). 12 Kourti, T., Nomikos, P., MacGregor, J.F., “Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway PLS”, J. Process Contr., 5 (4), 277-284 (1995). 13 Yoo, C.K., Lee, J.M., Vanrolleghem, P.A., Lee, I.B., “On-line monitoring of batch processes using multiway independent component analysis”, Chemom. Intell. Lab. Syst., 71 (2), 151-163 (2004a). 14 Yoo, C.k., Lee, D.S., Vanrolleghem, P.A., “Application of multiway ICA for on-line process monitoring of a sequencing batch reactor”, Water Res., 38 (7), 1715-1732 (2004b). 15 Tian, X.M., Zhang, X.L., Deng, X.G., Chen, S., “Multiway kernel independent component analysis based on feature samples for batch process monitoring”, Neurocomputing, 72 (7-9), 1584-1596 (2009). 16 Wang, L., Shi, H.B., “Multivariate statistical process monitoring using an improved independent component analysis”, Chem. Eng. Res. Des., 88 (4), 403-414 (2010). 17 Albazzaz, H., Wang, X.Z., “Mulitvariate statistical batch process monitoring using dynamic independent component analysis”, Comput. Aided Chem. Eng., 21, 1341-1346 (2006). 18 Stefatos, G., Hamza, A.B., “Dynamic independent component analysis approach for fault detection and diagnosis”, Expert Syst. Appl., 37 (12), 8606-8617 (2010). 19 Kano, M., Hasebe, S., Hashimoto, I., Ohno, H., “Evolution of multivariate statistical process control: Application of independent component analysis and external analysis”, Comput. Chem. Eng., 28 (6-7), 1157-1166 (2004). 20 Xia, C.M., Howell, J., “Isolating multiple sources of plant-wide oscillations via independent component analysis”, Control Eng. Pract., 13 (8), 1027-1035 (2005). 21 Ge, Z.Q., Song, Z.H., “Online monitoring of nonlinear multiple mode processes based on adaptive local model approach”, Control Eng. Pract., 16 (12), 1427-1437 (2008). 22 Zhang, Y.W., Zhang, Y., “Complex process monitoring using modified partial least squares method of independent component regression”, Chemom. Intell. Lab. Syst., 98 (2), 143-148 (2009). 23 Lee, J.M., Yoo, C.K., Lee, I.B., “Statistical process monitoring with independent component analysis”, J. Process Contr., 14 (5), 467-485 (2004b). 24 Back, A.D., Weigend, A.S., “A first application of independent component analysis to extracting structure from stock returns”, Int. J. Neural Syst., 8 (4), 473-484 (1997). 25 Cardoso, J.F., Soulomica, A., “Blind beam forming for non-Gaussian signals”, IEEEXplore-Radar Signal Process., 140 (6), 362-370 (1993). 26 Cheung, Y.M., Xu, L., “Independent component ordering in ICA time series analysis”, Neurocomputing, 41 (1-4), 145-152 (2001). 27 Box, G.E.P., Cox, D.R., “An analysis of transformations”, J. Roy. Stat. Soc. B., 26 (2), 221-252 (1964). 28 Comon, P., “Independent component analysis, a new concept”, Signal Process., 36 (3), 287-314 (1994). 29 Hyvärinen, A., Oja, E., “Independent component analysis: Algorithms and applications”, Neural Networks, 13 (4-5), 411-430 (2000). 30 Lee, T., Independent Component Analysis: Theory and Applications, Kluwer Academic Publishers, Boston, 5-21 (1998). 31 Hyvärinen, A., “Fast and robust fixed-point algorithms for independent component analysis”, IEEE Trans. Neural Networks, 10 (3), 626-634 (1999). 32 Lee, J.M., Yoo, C.K., Lee, I.B., “Enhanced process monitoring of fed-batch penicillin cultivation using time-varying and multivariate statistical analysis”, J. Biotechnol., 110 (2), 119-136 (2004a). 33 Carroll, R.J., Ruppert, D., Transformation and Weighting in Regression, Chapman and Hall, London, 121-136 (1988). 34 Atkinson, A., Riani, M., Robust Diagnostics Regression Analysis, Springer, New York, 81-101 (2000). 35 Westerhuis, J.A., Gurden, S.P., Smilde, A.K., “Generalized contribution plots in multivariate statistical process monitoring”, Chemom. Intell. Lab. Syst., 51 (1), 95-114 (2000).36 Birol, G., ündey, C., Cinar, A., “A modular simulation package for fed-batch fermentation: penicillin Production”, Comput. Chem. Eng., 26 (11), 1553-1565 (2002). |