1 Chen, G.Q., “A microbial polyhydroalkanoates (PHA) based bio- and materials industry”, Chem. Soc. Rev., 38, 2434-2446 (2009). 2 Dowes, E.A., Senior, P.J., “The role and regulation of energy reserve polymers in microorganisms”, Adv. Microb. Physiol., 10, 135-266 (1973). 3 Chen, G.Q., Luo, R.C., Xu, J., Wu, Q., Microbial PHA Based Eco-Material Industry, Chemical Industry Press, Beijing, 1-21 (2008). (in Chinese) 4 Chen, G.Q., Wu, Q., “The application of polyhydroxyalkanoates as tissue engineering materials”, Biomaterials, 26, 6565-6578 (2005). 5 Li, Z.J., Wei, X.X., Chen, G.Q., “Microbial cell factories for production of polyhydroxyalkanoates”, Chin. J. Biotechnol., 26, 1426-1435 (2010). 6 Steinbüchel, A., “Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example”, Macromol. Biosci., 1, 1-24 (2001). 7 Wu, Q., Wang, Y., Chen, G.Q., “Medical application of microbial biopolyesters polyhydroxyalkanoates”, Artif. Cells Blood Substit. Immobil. Biotechnol., 37, 1-12 (2009). 8 Liu, F., Jian, J., Shen, X.W., Chung, A., Chen, J.C., Chen, G.Q., “Metabolic engineering of Aeromonas hydrophila 4AK4 for production of copolymers of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoate”, Bioresour. Technol., 102, 8123-8129 (2011). 9 Lu, X.Y., Zhang, W.J., Jian, J., Wu, Q., Chen, G.Q., “Molecular cloning and functional analysis of two polyhydroxyalkanoate synthases from two strains of Aeromonas hydrophila spp.”, FEMS Microbiol. Lett., 243, 149-155 (2005). 10 Chen, G.Q., Zhang, G., Park, S.J., Lee, S.Y., “Industrial scale production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)”, Appl. Microbiol. Biotechnol., 57, 50-55 (2001). 11 He, W.N., Tian, W.D., Zhang, G., Chen, G.Q., Zhang, Z.M., “Production of novel polyhydroxyalkanoates by Pseudomonas stutzeri 1317 from glucose and soybean oil”, FEMS. Microbiol. Lett., 169, 45-49 (1998). 12 Chen, J.Y., Liu, T., Zheng, Z. Chen, J.C., Chen, G.Q., “Polyhydroxyalkanoate synthases phaC1 and phaC2 from Pseudomonas stutzeri 1317 had different substrate specificities”, FEMS. Microbiol. Lett., 234, 231-237 (2004). 13 Chen, G.Q., Xu, J., Wu, Q., Zhang, Z.M. Ho, K.P., “Synthesis of copolyesters consisting of medium-chain-length β-hydroxyalkanoates by Pseudomonas stutzeri 1317”. React. Funct. Poly., 48, 107-112 (2001). 14 Benner, S.A., Sismour, A.M., “Synthetic biology”, Nat. Rev. Genet., 6, 533-543 (2005). 15 Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G., Pühler, A., “Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum”, Gene., 145, 69-73 (1994). 16 Chen, J.Y., Song, G., Chen, G.Q., “A lower specificity phaC2 synthase from Pseudomonas stutzeri catalyses the production of copolyesters consisting of short-chain-length and medium-chain-length 3-hydroxyalkanoates”, Anton Leeuw. Int. J. G., 89, 157-167 (2006). 17 Cai, L., Yuan, M.Q., Liu, F., Chen, G.Q., “Enhanced production of medium-chain-length polyhydroxyalkanoates (PHA) by PHA depolymerase knockout mutant of Pseudomonas putida KT2442”, Bioresour. Technol., 100, 2265-2270 (2009). 18 Chung, A., Liu, Q., Ouyang, S.P., Wu, Q., Chen, G.Q., “Microbial production of 3-hydroxydodecanoic acid by pha operon and fadBA knockout mutant of Pseudomonas putida KT2442 harboring tesB gene”, Appl. Microbiol. Biotechnol., 83, 513-519 (2009). 19 Wei, X.X., Shi, Z.Y., Yuan, M.Q., Chen, G.Q., “Effect of anaerobic promoters on the microaerobic production of polyhydroxybutyrate (PHB) in recombinant Escherichia coli”, Appl. Microbiol. Biotechnol., 82, 703-712 (2009). 20 Yan, Y.L., Yang, J., Dou, Y.T., Chen, M., Ping, S.Z., Peng, J.P., Zhang, W., Yao, Z.Y., Li, H.Q., Liu, W., He, S., Geng, L.Z., Zhang, X.B., Yang, F., Yu, H.Y., Zhan, Y.H., Li, D.H., Lin, Z.L., Wang, Y.P., Elmerich, C., Lin, M., Jin, Q., “Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501”, Proc. Natl. Acad. Sci. USA, 105, 7564-7569 (2008). 21 Rehm, B.H.A., Kruger, N., Steinbüchel, A., “A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis: the phaG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein coenzyme A transferase”, J. Biol. Chem., 273, 24044-24051 (1998). 22 Fukui, T., Kichise, T., Iwata, T., Doi, Y., “Characterization of 13 kDa granule-associated protein in Aeromonas caviae and biosynthesis of polyhydroxy-alkanoates with altered molar composition by recombinant bacteria”, Biomacromolecules, 2, 148-153 (2001). 23 Simon, R., Priefer, U., Pühler, A., “A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria”, Nat. Biotechnol., 1, 784-791 (1983). 24 Qiu, Y.Z., Han, J., Guo, J.J., Chen, G.Q., “Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from gluconate and glucose by recombinant Aeromonas hydrophila and Pseudomonas putida”, Biotechnol. Lett., 27, 1381-1386 (2005). 25 Lu, X.Y., Wu, Q., Zhang, W.J., Jian, J., Chen, G.Q., “Studies on synthesis of polyhydroxyalkanoate consisting of 3-hydroxyvalerate by Aeromonas hydrophila”, Chin. J. Biotechnol., 20, 779-783 (2004). |