[1] K. Shugi, T. Sarvinder Singh, K. Pant, Equilibrium and kinetics studies on removal of arsenite by iron oxide coated activated alumina, Indian J. Environ. Health 45 (2) (2003) 151-154. [2] J.D. Ayotte, D.L. Montgomery, S.M. Flanagan, K.W. Robinson, Arsenic in groundwater in eastern New England: Occurrence, controls, and human health implications, Environ. Sci. Technol. 37 (10) (2003) 2075-2083. [3] M.F. Hughes, Arsenic toxicity and potential mechanisms of action, Toxicol. Lett. 133 (1) (2002) 1-16. [4] S. Chakravarty, V. Dureja, G. Bhattacharyya, S. Maity, S. Bhattacharjee, Removal of arsenic from groundwater using low cost ferruginous manganese ore, Water Res. 36 (3) (2002) 625-632. [5] A. Stoica, E. Pentecost, M.B. Martin, Effects of arsenite on estrogen receptor-α expression and activity in MCF-7 breast cancer cells, Endocrinology 141 (10) (2000) 3595-3602. [6] M. Dadwhal,M. Sahimi, T.T. Tsotsis, Adsorption isotherms of arsenic on conditioned layered double hydroxides in the presence of various competing ions, Ind. Eng. Chem. Res. 50 (4) (2011) 2220-2226. [7] S. Parsons, B. Jefferson, Introduction to Potable Water Treatment Processes, Blackwell Publishing, Oxford, UK, 2006. [8] A.H. Smith, P.A. Lopipero, M.N. Bates, C.M. Steinmaus, Arsenic epidemiology and drinking water standards, Science 296 (5576) (2002) 2145-2146. [9] H. Cui, Q. Li, S. Gao, J.K. Shang, As(III) and As(V) adsorption by hydrous zirconium oxide nanoparticles synthesized by a hydrothermal process followed with heat treatment, Ind. Eng. Chem. Res. 51 (1) (2012) 353-361. [10] N. Li, Z.M. Sun, F.H. Ruan, D.M. Du, M. Elimelech, A mechanism of removing arsenic(III) with ferric chloride, Chin. J. Chem. Eng. 123 (8) (1997) 800-807. [11] R.W. Schneiter, E.J. Middlebrooks, Arsenic and fluoride removal from groundwater by reverse osmosis, Environ. Int. 9 (4) (1983) 289-291. [12] R.Y. Ning, Arsenic removal by reverse osmosis, Desalination 143 (3) (2002) 237-241. [13] M. Kang,M. Kawasaki, S. Tamada, T. Kamei, Y.Magara, Effect of pH on the removal of arsenic and antimony using reverse osmosis membranes, Desalination 131 (1-3) (2000) 293-298. [14] Y. Sato, M. Kang, T. Kamei, Y. Magara, Performance of nanofiltration for arsenic removal, Water Res. 36 (13) (2002) 3371-3373. [15] M.C. Shih, An overview of arsenic removal by pressure-driven membrane processes, Desalination 172 (1) (2005) 85-97. [16] G.L. Ghurye, D.A. Clifford, A.R. Tripp, Combined arsenic and nitrate removal by ion exchange, J. Am. Water Works Assoc. 91 (10) (1999) 85-96. [17] J. Kim, M.M. Benjamin, Modeling a novel ion exchange process for arsenic and nitrate removal, Water Res. 38 (8) (2004) 2053-2062. [18] X.J. Guo, F.H. Chen, Elimination of arsenic from ground water by bead cellulose adsorbent loaded with Fe hydroxide, Chin. J. Chem. Eng. 56 (9) (2005) 1757-1764. [19] S. Shevade, R.G. Ford, Use of synthetic zeolites for arsenate removal from pollutant water, Water Res. 38 (14-15) (2004) 3197-3204. [20] B.A. Manning, S. Goldberg, Modeling arsenate competitive adsorption on kaolinite, montmorillonite and illite, Clays Clay Minerals 44 (5) (1996) 609-623. [21] B.A. Manning, S. Goldberg, Adsorption and stability of arsenic(III) at the clay mineral-water interface, Environ. Sci. Technol. 31 (7) (1997) 2005-2011. [22] T. Tuutijärvi, E. Repo, R. Vahala, M. Sillanpää, G. Chen, Effect of competing anions on arsenate adsorption onto maghemite nanoparticles, Chin. J. Chem. Eng. 20 (3) (2012) 505-514. [23] S. Dixit, J.G. Hering, Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility, Environ. Sci. Technol. 37 (18) (2003) 4182-4189. [24] K.P. Raven, A. Jain, R.H. Loeppert, Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes, Environ. Sci. Technol. 32 (3) (1998) 344-349. [25] G. Ona-Nguema, G. Morin, F. Juillot, G. Calas, G.E. Brown Jr., EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite, Environ. Sci. Technol. 39 (23) (2005) 9147-9155. [26] C. Tokoro, Y. Yatsugi, H. Koga, S. Owada, Sorption mechanisms of arsenate during coprecipitation with ferrihydrite in aqueous solution, Environ. Sci. Technol. 44 (2) (2009) 638-643. [27] B.A. Manning, S.E. Fendorf, S. Goldberg, Surface structures and stability of arsenic(III) on goethite: Spectroscopic evidence for inner-sphere complexes, Environ. Sci. Technol. 32 (16) (1998) 2383-2388. [28] Y. Tang, J. Wang, N. Gao, Characteristics and model studies for fluoride and arsenic adsorption on goethite, J. Environ. Sci. Health A 22 (11) (2010) 1689-1694. [29] M.L. Farquhar, J.M. Charnock, F.R. Livens, D.J. Vaughan, Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lepidocrocite, mackinawite, and pyrite: an X-ray absorption spectroscopy study, Environ. Sci. Technol. 36 (8) (2002) 1757-1762. [30] G. Aurelio, A. Fernandez-Martinez, G.J. Cuello, G. Román-Ross, I. Alliot, L. Charlet, Structural study of selenium and arsenic substitution in calcite, Chem. Geol. 270 (1-4) (2010) 249-256. [31] A. Fernandez-Martinez, G. Román-Ross, G. Cuello, X. Turrillas, L. Charlet,M. Johnson, F. Bardelli, Arsenic uptake by gypsum and calcite:modelling and probing by neutron and X-ray scattering, Condens. Matter Phys. 385 (2) (2006) 935-937. [32] H.U. Sø, D. Postma, R. Jakobsen, F. Larsen, Sorption and desorption of arsenate and arsenite on calcite, Geochim. Cosmochim. Acta 72 (24) (2008) 5871-5884. [33] F. Di Benedetto, P. Costagliola, M. Benvenuti, P. Lattanzi, M. Romanelli, G. Tanelli, Arsenic incorporation in natural calcite lattice: evidence from electron spin echo spectroscopy, Earth Planet. Sci. Lett. 246 (3-4) (2006) 458-465. [34] J.D. Rodríguez-Blanco, A. Jiménez, M. Prieto, Oriented overgrowth of pharmacolite (CaHAsO4·2H2O) on gypsum (CaSO4·2H2O), Cryst. Growth Des. 7 (12) (2007) 2756-2763. [35] J.D. Rodríguez, A. Jiménez, M. Prieto, L. Torre, S. García-Granda, Interaction of gypsum with As(V)-bearing aqueous solutions: surface precipitation of guerinite, sainfeldite, and Ca2NaH(AsO4)2·6H2O, a synthetic arsenate, Am. Mineral. 93 (5-6) (2008) 928-939. [36] P. Swash, A. Monhemius, Synthesis, characterization and solubility testing of solids in the Ca-Fe-AsO4 system, Proceedings of the Sudbury '95 Conference on Mining and the Environment, CANMET, Ottawa, 1995. [37] M.N. Amin, S. Kaneco, T. Kitagawa, A. Begum, H. Katsumata, T. Suzuki, K. Ohta, Removal of arsenic in aqueous solutions by adsorption onto waste rice husk, Ind. Eng. Chem. Res. 45 (24) (2006) 8105-8110. [38] Y.F. Pan, C.T. Chiou, T.F. Lin, Adsorption of arsenic(V) by iron-oxide-coated diatomite (IOCD), Environ. Sci. Pollut. Res. 17 (8) (2010) 1401-1410. [39] J. Zachara, J. Kittrick, J. Harsh, The mechanism of Zn2+ adsorption on calcite, Geochim. Cosmochim. Acta 52 (9) (1988) 2281-2291. [40] J. Febrianto, A.N. Kosasih, J. Sunarso, Y.H. Ju, N. Indraswati, S. Ismadji, Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies, J. Hazard. Mater. 162 (2-3) (2009) 616-645. [41] L. Yang, S. Wu, J.P. Chen, Modification of activated carbon by polyaniline for enhanced adsorption of aqueous arsenate, Ind. Eng. Chem. Res. 46 (7) (2007) 2133-2140. [42] G. Roman-Ross, L. Charlet, G. Cuello, D. Tisserand, Arsenic removal by gypsum and calcite in lacustrine environments, J. Phys. IV France 107 (2003) 1153-1156. [43] F. Juillot, P. Ildefonse, G. Morin, G. Calas, A.M. Kersabiec, M. Benedetti, Remobilization of arsenic from buried wastes at an industrial site:mineralogical and geochemical control, Appl. Geochem. 14 (8) (1999) 1031-1048. [44] D. Bosbach, J.L. Junta-Rosso, U. Becker, M.F. Hochella Jr., Gypsum growth in the presence of background electrolytes studied by scanning force microscopy, Geochim. Cosmochim. Acta 60 (17) (1996) 3295-3304. [45] D. Bosbach, W. Rammensee, In situ investigation of growth and dissolution on the (010) surface of gypsum by scanning force microscopy, Geochim. Cosmochim. Acta 58 (2) (1994) 843-849. |