[1] P. Weiland, Biogas production: current state and perspectives, Appl. Microbiol. Biot. 85 (4) (2010) 849-860.[2] A. Petersson, A. Wellinger, Biogas upgrading technologies—developments and innovations, IEA Bioenergy Task 37 (2009).[3] H. Nie, H. Jiang, D. Chong, Q.Wu, C. Xu, H. Zhou, Comparison of water scrubbing and propylene carbonate absorption for biogas upgrading process, Energ. Fuel 27 (6) (2013) 3239-3245.[4] S.S. Kapdi, V.K. Vijay, S.K. Rajesh, R. Prasad, Biogas scrubbing, compression and storage: perspective and prospectus in Indian context, Renew. Energ. 30 (8) (2005) 1195-1202.[5] J. Niesner, D. Jecha, P. Stehlík, Biogas upgrading technologies: State of art review in European region, Chem. Eng. Trans. 35 (2013) 517-522.[6] E. Ryckebosch, M. Drouillon, H. Vervaeren, Techniques for transformation of biogas to biomethane, Biomass Bioenergy 35 (5) (2011) 1633-1645.[7] A. Laura, S.M. Pellegrini, Simone Gamba, Energy saving in a CO2 capture plant by MEA scrubbing, ChERD. 89 (2011) 1676-1683.[8] L. Duan, M. Zhao, Y. Yang, Integration and optimization study on the coal-fired power plant with CO2 capture using MEA, Energy 45 (1) (2012) 107-116.[9] T. Patterson, S. Esteves, R. Dinsdale, A. Guwy, An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK, Energ Policy 39 (3) (2011) 1806-1816.[10] W. Afzal, X. Liu, J.M. Prausnitz, Solubilities of some gases in four immidazolium-based ionic liquids, J. Chem. Thermodyn. 63 (2013) 88-94.[11] F. Karadas,M. Atilhan, S. Aparicio, Reviewon the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening, Energ. Fuel 24 (11) (2010) 5817-5828.[12] M. Althuluth, M.C. Kroon, C.J. Peters, Solubility ofmethane in the ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, Ind. Eng. Chem. Res. 51 (51) (2012) 16709-16712.[13] S. Raeissi, C.J. Peters, A potential ionic liquid for CO2-separating gas membranes: Selection and gas solubility studies, Green Chem. 11 (2) (2009) 185-192.[14] J. Xu, S.Wang,W. Yu, Q. Xu,W.Wang, J. Yin,Molecular dynamics simulation for the binary mixtures of high pressure carbon dioxide and ionic liquids, Chin. J. Chem. Eng. 22 (2) (2014) 153-163.[15] Y. Qiao, F. Yan, S. Xia, P. Ma, Densities and viscosities of 1-butyl-3-methylimidazolium hexafluorophosphate bmim PF6+CO2 binary system: determination and correlation, Chin. J. Chem. Eng. 21 (11) (2013) 1284-1290.[16] X. Zhang, X. Zhang, H. Dong, Z. Zhao, S. Zhang, Y. Huang, Carbon capture with ionic liquids: overview and progress, Energy Environ. Sci. 5 (5) (2012) 6668-6681.[17] M. Hasib-ur-Rahman, M. Siaj, F. Larachi, Ionic liquids for CO2 capture—development and progress, Chem. Eng. Process. 49 (4) (2010) 313-322.[18] L. Zhang, J. Chen, J.X. Lv, S.F.Wang, Y. Cui, Progress and development of capture for CO2 by ionic liquids, Asian J. Chem. 25 (5) (2013) 2355-2358.[19] Z. Zhao, H. Dong, X. Zhang, The research progress of CO2 capture with ionic liquids, Chin. J. Chem. Eng. 20 (1) (2012) 120-129.[20] F. Karadas,M. Atilhan, S. Aparicio, Reviewon the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening, Energ. Fuel 24 (2010) 5817-5828.[21] S. Aparicio, M. Atilhan, Computational study of hexamethylguanidiniumlactate ionic liquid: A candidate for natural gas sweetening, Energ. Fuels 24 (2010) 4989-5001.[22] S. Raeissi, C.J. Peters, Carbon dioxide solubility in the homologous 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide family†, J. Chem. Eng. Data 54 (2) (2009) 382-386.[23] E. Ali, I. Alnashef, A. Ajbar, S. Mulyono, H.F. Hizaddin, M.K. Hadj-Kali, Determination of cost-effective operating condition for CO2 capturing using 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid, Korean J. Chem. Eng. 30 (11) (2013) 2068-2077.[24] S. Raeissi, C. Peters, High pressure phase behaviour of methane in 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide, Fluids Phase Equilib. 294 (1) (2010) 67-71.[25] S.N. Aki, B.R. Mellein, E.M. Saurer, J.F. Brennecke, High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids, J. Phys. Chem. B 108 (52) (2004) 20355-20365.[26] S. Kumar, J.H. Cho, I. Moon, Ionic liquid-amine blends and CO2BOLs: Prospective solvents for natural gas sweetening and CO2 capture technology—A review, Int. J. Greenh. Gas. Con. 20 (2014) 87-116.[27] K. Starr, X. Gabarrell, G. Villalba, L. Talens, L. Lombardi, Life cycle assessment of biogas upgrading technologies, Waste Manag. 32 (5) (2012) 991-999.[28] P. Cozma, C. Ghinea, I.M?m?lig?,W.Wukovits,A.Friedl,M. Gavrilescu, Environmental impact assessment of high pressure water scrubbing biogas upgrading technology, Clean Soil Air Water 41 (9) (2013) 917-927.[29] X. Zhang, C. Li, C. Fu, S. Zhang, Environmental impact assessment of chemical process using the green degree method, Ind. Eng. Chem. Res. 47 (4) (2008) 1085-1094.[30] R. Yan, Z. Li, Y. Diao, C. Fu,H.Wang, C. Li, Q. Chen, X. Zhang, S. Zhang, Green process for methacrolein separationwith ionic liquids in the production ofmethylmethacrylate, AICHE J. 57 (9) (2011) 2388-2396.[31] S. Mattedi, P.J. Carvalho, J.A.P. Coutinho, V.H. Alvarez, M. Iglesias, High pressure CO2 solubility in N-methyl-2-hydroxyethylammonium protic ionic liquids, J. Supercrit. Fluids 56 (3) (2011) 224-230.[32] A.M. Pinto, H. Rodriguez, Y.J. Colon, A. Arce Jr., A. Arce, A. Soto, Absorption of carbon dioxide in two binary mixtures of ionic liquids, Ind. Eng. Chem. Res. 52 (17) (2013) 5975-5984.[33] J. Troncoso, C.A. Cerdeiriña, Y.A. Sanmamed, L. Romaní, L.P.N. Rebelo, Thermodynamic properties of imidazolium-based ionic liquids: Densities, heat capacities, and enthalpies of fusion of [bmim][PF6] and [bmim][NTf2], J. Chem. Eng. Data 51 (5) (2006) 1856-1859.[34] Y. Huang, H. Dong, X. Zhang, C. Li, S. Zhang, New fragment contributioncorresponding states method for physicochemical properties prediction of ionic liquids, AICHE J. 59 (4) (2013) 1348-1359.[35] M.B. Gorensek, C.W. Forsberg, Relative economic incentives for hydrogen from nuclear, renewable, and fossil energy sources, Int. J. Hydrogen Energ. 34 (9) (2009) 4237-4242.[36] T. Botha, H. Von Blottnitz, A comparison of the environmental benefits of bagasse-derived electricity and fuel ethanol on a life-cycle basis, Energ Policy 34 (17) (2006) 2654-2661.[37] J.R. Moreira, Sugarcane for energy—recent results and progress in Brazil, Energy. Sustain. Dev. 4 (3) (2000) 43-54.[38] F. Fantozzi, C. Buratti, Biogas production fromdifferent substrates in an experimental continuously stirred tank reactor anaerobic digester, Bioresour. Technol. 100 (23) (2009) 5783-5789.[39] X. Tian, X. Zhang, S. Zeng, Y. Xu, Y. Yao, Y. Chen, L. Huang, Y. Zhao, S. Zhang, Process analysis andmulti-objective optimization of ionic liquid-containing acetonitrile process to produce 1,3-butadiene, Chem. Eng. Technol. 34 (6) (2011) 927-936.[40] M. Hagen, E. Polman, J.K. Jensen, A. Myken, O. Jönsson, A. Dahl, Adding gas from biomass to the gas grid, Rep. SGC 118 (2001).[41] X. Zhang, X. He, T. Gundersen, Post-combustion carbon capture with a gas separation membrane: Parametric study, capture cost, and exergy analysis, Energ. Fuel 27 (8) (2013) 4137-4149.[42] M. Persson, Evaluation of upgrading techniques for biogas, Report SGC 142 (2003).[43] D. Camper, J. Bara, C. Koval, R. Noble, Bulk-fluid solubility and membrane feasibility of Rmim-based room-temperature ionic liquids, Ind. Eng. Chem. Res. 45 (18) (2006) 6279-6283.[44] Y. Hou, R.E. Baltus, Experimental measurement of the solubility and diffusivity of CO2 in room-temperature ionic liquids using a transient thin-liquid-film method, Ind. Eng. Chem. Res. 46 (24) (2007) 8166-8175.[45] J. Kume?an, D. Tuma, G. Maurer, Partial molar volumes of selected gases in some ionic liquids, Fluids Phase Equilib. 275 (2) (2009) 132-144. |