[1] J. Baldyga, R. Pohorecki, Turbulent micromixing in chemical reactors—A review, Chem. Eng. J. 58 (1995) 183-195. [2] I.L.M. Verschuren, J.G. Wijers, J.T.F. Keurentjes, Effect of mixing on product quality in semibatch stirred tank reactors, AIChE J. 47 (2001) 1731-1739. [3] J.F. Chen, C. Zheng, G.T. Chen, Interaction ofmacro- andmicromixing on particle size distribution in reactive precipitation, Chem. Eng. Sci. 51 (1996) 1957-1966. [4] J.A. Carver, S. Plains, W.F. Rollman, “Method and apparatus for mixing and contacting fluids”, U.S. Patent no. 2,751 335 (1956). [5] I.T. Elperin, Heat andmass transfer in opposing currents, J. Eng. Phys. 6 (1961)62-68. [6] J. Saien, S.A.E. Zonouzian, A.M. Dehkordi, Investigation of a two impinging-jets contacting device for liquid-liquid extraction processes, Chem. Eng. Sci. 61 (2006) 3942-3950. [7] A.W. Kleingeld, L. Lorenzen, F.G. Botes, The development and modeling of highintensity impinging streams jet reactors for effective mass transfer in heterogeneous systems, Chem. Eng. Sci. 54 (1999) 4991-4995. [8] D.R. Unger, F.J. Muzzio, R.S. Brodkey, Experimental and numerical characterization of viscous flow and mixing in an impinging jet contactor, Can. J. Chem. Eng. 76 (1998) 546-555. [9] S. Devahastin, A.S. Mujumdar, A numerical study of flow and mixing characteristics of laminar confined impinging streams, Chem. Eng. J. 85 (2002) 215-223. [10] S. Devahastin, A.S. Mujumdar, A numerical study of mixing in a novel impinging stream inline mixer, Chem. Eng. Process. 40 (2001) 459-470. [11] S. Devahastin, A.S. Mujumdar, A study of turbulent mixing of confined impinging stream using a new composite turbulence model, Ind. Eng. Chem. Res. 40 (2001) 4998-5004. [12] A.M. Dehkordi, Novel type of two-impinging-jets reactor for solid-liquid enzyme reactions, AIChE J. 52 (2006) 692-704. [13] A.J. Mahajan, D.J. Kirwan, Micromixing effect in a two-impinging jets precipitator, AIChE J. 42 (1996) 1801-1814. [14] J.M. Hacherl, E.L. Paul, H.M. Buettner, Investigation of impinging jet crystallization with a calcium oxalate model system, AIChE J. 49 (2003) 2352-2362. [15] B.K. Johnson, R.K. Prud’homme, Chemical processing and micromixing in confined impinging jets, AIChE J. 49 (2003) 2264-2282. [16] Y. Liu, R.O. Fox, CFD predictions for chemical processing in a confined impinging-jets reactor, AIChE J. 52 (2006) 731-744. [17] X. Shi, Y. Xiang, L.X.Wen, CFD analysis of flow patterns and micromixing efficiency in a Y-type microchannel reactor, Ind. Eng. Chem. Res. 51 (2012) 13944-13952. [18] S.W. Siddiqui, Y. Zhao,A.Kukukova, S.M. Kresta,Characteristicsof a confined impinging jet reactor: energy dissipation, homogeneous and heterogeneous reaction products, and effect of unequal flow, Ind. Eng. Chem. Res. 48 (2009) 7945-7958. [19] M.C. Fournier, L. Falk, J. Villermaux, A new parallel competing reaction system for assessing micromixing efficiency—experimental approach, Chem. Eng. Sci. 51 (1996) 5053-5064. [20] P. Guichardon, L. Falk, Characterisation of micromixing efficiency by the iodide-iodate reaction system. Part I: experimental procedure, Chem. Eng. Sci. 55 (2000) 4233-4243. [21] P. Guichardon, L. Falk, J. Villermaux, Characterisation of micromixing efficiency by the iodide-iodate reaction system. Part II: Kinetic study, Chem. Eng. Sci. 55 (2000) 4245-4253. [22] H.F. Liu, F.C. Wang, T. Wu, X. Gong, Z.Y. Yu, Micromixing process in counterflowing gasifier, J. East China Univ. Sci. Technol. 25 (1999) 228-232 (in Chinese). [23] M.C. Fournier, L. Falk, J. Villermaux, A new parallel competing reaction system for assessing micromixing efficiency—determination of micromixing time by a simple model, Chem. Eng. Sci. 51 (1996) 5187-5192. [24] J. Villermaux, L. Falk, M.C. Fournier, Use of parallel competing reactions to characterize micromixing efficiency, AIChE Symp. Ser. 286 (1992) 6-10. [25] C.I. Liu, D.J. Lee, Micromixing effects in a Couette flow reactor, Chem. Eng. Sci. 54 (1999) 2883-2888. [26] J.Z. Fang, D.J. Lee, Micromixing efficiency in static mixer, Chem. Eng. Sci. 56 (2001) 3797-3802. [27] G.W. Chu, Y.H. Song, Micromixing efficiency of a novel rotor-stator reactor, Chem. Eng. J. 128 (2007) 191-196. [28] H.J. Yang, G.W. Chu, J.W. Zhang, Z.G. Shen, J.F. Chen, Micromixing efficiency in a rotating packed bed: experiments and simulation, Ind. Eng. Chem. Res. 44 (2005) 7730-7737. [29] K. Yang, G.W. Chu, L. Shao, Y. Xiang, L.L. Zhang, J.F. Chen, Micromixing efficiency of viscous media in micro-channel reactor, Chin. J. Chem. Eng. 17 (2009) 546-551. [30] Q.A. Wang, J.X. Wang, W. Yu, L. Shao, G.Z. Chen, J.F. Chen, Investigation of micromixing efficiency in a novel high-throughput microporous tube-in-tube microchannel reactor, Ind. Eng. Chem. Res. 48 (2009) 5004-5009. [31] Y. Ying, G.W. Chen, Y.C. Zhao, S.L. Li, Q. Yuan, A high throughput methodology for continuous preparation of monodispersed nanocrystals in microfluidic reactors, Chem. Eng. J. 135 (2008) 209-215. |