[1] D.W. Bruce, D. O'Hare, R.I.Walton, Porous Materials Inorganic Materials Series, John Wiley & Sons, New York, 2011.
[2] B. Crittenden, W.J. Thomas, Adsorption Technology & Design, Butterworth- Heinemann, London, 1998.
[3] O.G. Jepps, S.K. Bhatia, D.J. Searles, Modeling molecular transport in slit pores, J. Chem. Phys. 120 (2004) 5396-5406.
[4] S.K. Bhatia, M.R. Bonilla, D. Nicholson, Molecular transport in nanopores: A theoretical perspective, Phys. Chem. Chem. Phys. 13 (2011) 15350-15383.
[5] S.K. Bhatia, D. Nicholson, Modeling self-diffusion of simple fluids in nanopores, J. Phys. Chem. B 115 (2011) 11700-11711.
[6] J.J. Magda, M. Tirrell, H.T. Davis, Molecular dynamics of narrow, liquid-filled pores, J. Chem. Phys. 83 (1985) 1888-1901.
[7] C.B. Zhang, Y.P. Chen, L.B. Yang, M.H. Shi, Self-diffusion for Lennard-Jones fluid confined in a nanoscale space, Int. J. Heat Mass Transf. 54 (2011) 4770-4773.
[8] F. Sofos, T. Karakasidis, A. Liakopoulos, Transport properties of liquid argon in krypton nanochannels: Anisotropy and non-homogeneity introduced by the solid walls, Int. J. Heat Mass Transf. 52 (2009) 735-743.
[9] C.Z. Sun, W.Q. Lu, B.F. Bai, J. Liu, Transport properties of Ar-Kr binary mixture in nanochannel Poiseuille flow, Int. J. Heat Mass Transf. 55 (2012) 1732-1740.
[10] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, Second edition John Wiley & Sons, Inc., New York, 2002.
[11] E.L. Cussler, Diffusion: Mass Transfer in Fluid Systems, Third edition, Cambridge University Press, Cambridge, 2009.
[12] S. Glasstone, K.J. Laidler, H. Eyring, Theory of Rate Processes, McGraw-Hill, New York, 1941.
[13] W.D. Monnery, W.Y. Svrcek, A.K. Mehrotra, Viscosity: a critical review of practical predictive and correlative methods, Can. J. Chem. Eng. 73 (1995) 3-40.
[14] B.E. Poling, J.M. Prausnitz, J.P. O'Connell, The Properties of Gases and Liquids, Fifth edition McGRAW-HILL, New York, 2001.
[15] E. Pollak, P. Talkner, Reaction rate theory:What it was, where is it today, and where is it going? Chaos 15 (2005) 026116.
[16] S. Glasstone, K.J. Laidler, H. Eyring, The Theory of Rate Process, McGraw-Hill, New York, 1941.
[17] A.K. Kikoin, I.K. Kikoin, Molecular Physics, Mir Publishers, Moscow, 1978.
[18] G.Z. Han, Z.K. Fang,M.D. Chen, Modified Eyring viscosity equation and calculation of activation energy based on the liquid quasi-lattice model, Sci. China Phys. Mech. Astron. 53 (2010) 1853-1860.
[19] J.E. Lennard-Jones, On the determination ofmolecular fields, Proc. R. Soc. London, Ser. A 106 (1924) 463-477.
[20] W.H. Stockmayer, Second virial coefficients of polar gases, J. Chem. Phys. 9 (1941) 398-402.
[21] J.P. Hansen, I.R. Mcdonald, Theory of Simple Liquids, Third edition, Academic Press Inc, London, 2006.
[22] M.L. Bellac, F. Mortessagne, G.G. Batrouni, Equilibrium and Non-equilibriumStatistical Thermodynamics, Cambridge University Press, Cambridge, 2004.
[23] F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by Powders and Porous Solids, Academic, London, 1999.
[24] S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Kluwer, Boston, 2004.
[25] W.A. Steele, The physical interaction of gases with crystalline solids: I. Gas-solid energies and properties of isolated adsorbed atoms, Surf. Sci. 36 (1973) 317-352.
[26] O.G. Jepps, S.K. Bhatia, D.J. Searles, Modeling molecular transport in slit pores, J. Chem. Phys. 120 (2004) 5396-5406.
[27] K. Tankeshwar, S. Srivastava, Dynamical model for restricted diffusion in nanochannels, Nanotechnology 18 (2007) 485714.
[28] D.R. Lide, CRC Handbook of Chemistry and Physics, 90th edition CRC Press/Taylor and Francis, Boca Raton, FL, 2010.
[29] L.P. Chen, S.J. Han, Prediction of self-diffusion coefficients of molecules in liquids, Chem. J. Chin. Univ. 13 (1992) 231-234 (in Chinese).
[30] J. Klein, E. Kumacheva, Simple liquids confined to molecularly thin layers. I. Confinement-induced liquid-to-solid phase transitions, J. Chem. Phys. 108 (1998) 6996-7009.
[31] S. Granick, Motions and relaxations of confined liquids, Science 253 (1991) 1374-1379. |