[1] W. Tischer, F. Wedekind, Immobilized enzymes, methods and applications, Top. Curr. Chem. 200 (1999) 95-126.[2] C. Yin, T. Liu, T. Tan, Synthesis of vitamin A esters by immobilized Candida sp. lipase in organic media, Chin. J. Chem. Eng. 14 (2006) 81-86.[3] B. Krajewska, Application of chitin-and chitosan-based materials for enzyme immobilizations, a review, Enzym. Microb. Technol. 35 (2004) 126-139.[4] S. Zhang, S. Gao, G. Gao, Immobilization of β-galactosidase onto magnetic beads, Appl. Biochem. Biotechnol. 160 (2010) 1386-1393.[5] L. Deng, X.Wang, K. Nie, F. Wang, J. Liu, P. Wang, T. Tan, Synthesis of wax esters by lipase-catalyzed esterification with immobilized lipase from Candida sp. 99-125, Chin. J. Chem. Eng. 19 (2011) 978-982.[6] A.Z. Abdullah, N.S. Sulaiman, A.H. Kamaruddin, Biocatalytic esterification of citronellol with lauric acid by immobilized lipase on aminopropyl-graftedmesoporous SBA-15, Biochem. Eng. J. 44 (2009) 263-270.[7] Y.X. Bai, Y.F. Li, Y. Yang, L.X. Yi, Covalent immobilization of triacylglycerol lipase onto functionalized nanoscale SiO2 spheres, J. Biotechnol. 125 (2006) 574-582.[8] G. Bayramoglu, M. Yilmaz, A.U. Senel, M.Y. Arica, Preparation of nanofibrous polymer graftedmagnetic poly(GMA-MMA)-g-MAA beads for immobilization of trypsin via adsorption, Biochem. Eng. J. 40 (2008) 262-274.[9] C. Zhou, S. Zhu, X. Wu, B. Jiang, T. Cen, S. Shen, Post-immobilization of modified macromolecular reagents using assembled penicillin acylase for microenvironmental regulation of nanopores and enhancement of enzyme stability, Biotechnol. Bioprocess Eng. 15 (2010) 376-382.[10] G. Bayramoglu, M.Y. Arica, Enzymatic removal of phenol and β-chlorophenol in enzyme reactor, horseradish peroxidase immobilized on magnetic beads, J. Hazard. Mater. 156 (2008) 148-155.[11] M.Y. Arica, H. Soydogan, G. Bayramoglu, Reversible immobilization of Candida rugosa lipase on fibrous polymer grafted and sulfonated p(HEMA/EGDMA) beads, Bioprocess Biosyst. Eng. 33 (2010) 227-236.[12] B. Karagoz, G. Bayramoglu, B. Altintas, N. Bicak, M.Y. Arica, Poly(glycidyl methacrylate)-polystyrene diblocks copolymer grafted nanocomposite microspheres from surface-initiated atom transfer radical polymerization for lipase immobilization, application in flavor ester synthesis, Ind. Eng. Chem. Res. 49 (2010) 9655-9665.[13] G. Bayramoglu, B. Karagoz, B. Altintas, M.Y. Arica, N. Bicak, Poly(styrene-divinylbenzene) beads surface functionalized with di-block polymer grafting and multi-modal ligand attachment, performance of reversibly immobilized lipase in ester synthesis, Bioprocess Biosyst. Eng. 34 (2011) 735-746.[14] G. Bayramoglu, B. Hazer, B. Altintas, M.Y. Arica, Covalent immobilization of lipase onto amine functionalized polypropylene membrane and its application in green apple flavor (ethyl valerate) synthesis, Process Biochem. 46 (2011) 372-378.[15] X. Liu, Y. Guan, R. Shen, H. Liu, Immobilization of lipase onto micron-size magnetic beads, J. Chromatogr. B 822 (2005) 91-97.[16] A. Dyal, K. Loos, M. Noto, S.W. Chang, C. Spagnoli, K.V.P.M. Shafi, A. Ulman, M. Cowman, R.A. Gross, Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles, J. Am. Chem. Soc. 125 (2003) 1684-1685.[17] Y. Ding, Y. Hu, L. Zhang, Y. Chen, X. Jiang, Synthesis and magnetic properties of biocompatible hybrid hollow spheres, Biomacromolecules 7 (2006) 1766-1772.[18] Z. Ma, Y. Guan, H. Liu, Superparamagnetic silica nanoparticles with immobilized metal affinity ligands for protein adsorption, J. Magn. Magn. Mater. 301 (2006) 469-477.[19] S.M. O'Brien, O.R.T. Thomas, P. Dunnill, Non-porous magnetic chelator supports for protein recovery by immobilised metal affinity adsorption, J. Biotechnol. 50 (1996) 13-25.[20] Y. Cui, Y. Li, Y. Yang, X. Liu, L. Lei, L. Zhou, F. Pan, Facile synthesis of amino-silane modified superparamagnetic Fe3O4 nanoparticles and application for lipase immobilization, J. Biotechnol. 150 (2010) 171-174.[21] Z. Guo, S. Bai, Y. Sun, Preparation and characterization of immobilized lipase on magnetic hydrophobic microspheres, Enzym. Microb. Technol. 32 (2003) 776-782.[22] Y. Yong, Y.X. Bai, Y.F. Li, L. Lin, Y.J. Cui, C.G. Xia, Characterization of Candida rugosa lipase immobilized onto magnetic microspheres with hydrophilicity, Process Biochem. 43 (2008) 1179-1185.[23] A.B. Bourlinos, M.A. Karakassides, A. Simopoulos, D. Petridis, Synthesis and characterization of magnetically modified clay composites, Chem. Mater. 12 (2000) 2640-2645.[24] M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72 (1976) 248-254.[25] J. Huang, Y. Liu, X. Wang, Silanized palygorskite for lipase immobilization, J. Mol. Catal. B Enzym. 57 (2009) 10-15.[26] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed. Wiley-Interscience Publication, NY, USA, 1978. 232-233.[27] J. Yu, Q.X. Yang, Magnetization improvement of Fe-pillared clay with application of polyetheramine, Appl. Clay Sci. 48 (2010) 185-190.[28] A. Xue, S. Zhou, Y. Zhao, X. Lu, P. Han, Effective NH2-grafting on attapulgite surfaces for adsorption of reactive dyes, J. Hazard. Mater. 194 (2011) 7-14.[29] G. Zhao, J.Wang, Y. Li, X. Chen, Y. Liu, Enzymes immobilized on superparamagnetic Fe3O4@Clays nanocomposites: Preparation, characterization, and a new strategy for the regeneration of supports, J. Phys. Chem. C 115 (2011) 6350-6359.[30] T. Szabo, A. Bakandritsos, V. Tzitzios, S. Papp, L. Korosi, G. Galbacs, K. Musabekov, D. Bolatova, D. Petridis, I. Dekany, Magnetic iron oxide/clay composites, effect of the layer silicate support on the microstructure and phase formation of magnetic nanoparticles, Nanotechnology 18 (2007) 285602-285610.[31] A. Katiyar, L. Ji, P. Smirniotis, N.G. Pinto, Protein adsorption on the mesoporous molecular sieve silicate SBA-15, effects of pH and pore size, J. Chromatogr. A 1069 (2005) 119-126.[32] D.S. Jiang, S.Y. Long, J. Huang, H.Y. Xiao, J.Y. Zhou, Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres, Biochem. Eng. J. 25 (2005) 15-23.[33] K. Zhu, J. Wang, Y. Wang, H. Liu, P. Han, P. Wei, Synthesis of retinyl palmitate catalyzed by Candida sp. 99-125 lipase immobilized on fiber-like SBA-15 mesoporous material, J. Nanosci. Nanotechnol. 11 (2011) 7593-7602. |