[1] J. Virkutyte, M. Sillanpaa, P. Latostenmaa, Electrokinetic soil remediation-critical overview, Sci. Total Environ. 289(1-3) (2002) 97-121.[2] A.T. Yeung, Y.-Y. Gu, Use of chelating agents in electrochemical remediation of contaminated soil, Chelating Agents for Land Decontamination Technologies, ASCE Press, Reston, Virginia 2012, pp. 212-280.[3] A.T. Yeung, S. Datla, Fundamental formulation of electrokinetic extraction of contaminants from soil, Can. Geotech. J. 32(4) (1995) 569-583.[4] M. Mascia, S. Palmas, A.M. Polcaro, A. Vacca, A. Muntoni, Experimental study and mathematical model on remediation of Cd spiked kaolinite by electrokinetics, Electrochim. Acta 52(10) (2007) 3360-3365.[5] A.T. Yeung, C. Hsu, R.M.Menon, Physicochemical soil-contaminant interactions during electrokinetic extraction, J. Hazard. Mater. 55(1-3) (1997) 221-237.[6] P. She, Z. Liu, F.X. Ding, J.G. Yang, X. Liu, Surfactant enhanced electroremediation of phenanthrene, Chin. J. Chem. Eng. 11(1) (2003) 73-78.[7] S. Lukman, M.H. Essa, N.D. Mu'azu, A. Bukhari, Coupled electrokinetics-adsorption technique for simultaneous removal of heavy metals and organics from saline-sodic soil, Sci. World J. 2013(2013) 1-9.[8] S.H. Guo, R.J. Fan, T.T. Li, N. Hartog, F.M. Li, X.L. Yang, Synergistic effects of bioremediation and electrokinetics in the remediation of petroleum-contaminated soil, Chemosphere 109(2014) 226-233.[9] Q.S. Luo, H.Wang, X.H. Zhang, X.Y. Fan, Y. Qian, In situ bioelectrokinetic remediation of phenol-contaminated soil by use of an electrode matrix and a rotational operation mode, Chemosphere 64(4) (2006) 415-422.[10] A. Giannis, E. Gidarakos, A. Skouta, Transport of cadmium and assessment of phytotoxicity after electrokinetic remediation, J. Environ. Manage. 86(3) (2008) 535-544.[11] K.R. Reddy, C.Y. Xu, S. Chinthamreddy, Assessment of electrokinetic removal of heavy metals from soils by sequential extraction analysis, J. Hazard. Mater. 84(2-3) (2001) 279-296.[12] P. Lu, Q.Y. Feng, Q.J. Meng, T. Yuan, Electrokinetic remediation of chromium- and cadmium-contaminated soil from abandoned industrial site, Sep. Purif. Technol. 98(2012) 216-220.[13] Y.Y. Gu, R.B. Fu, H.J. Li, Electrochemical remediation of cadmium-contaminated soil enhanced by citric acid industrial wastewater, J. Chem. Ind. Eng. (China) 65(8) (2014) 3170-3177(in Chinese).[14] D.H. Kim, J.C. Yoo, B.R. Hwang, J.S. Yang, K. Baek, Environmental assessment on electrokinetic remediation of multimetal-contaminated site:a case study, Environ. Sci. Pollut. Res. 21(2014) 6751-6758.[15] C. Yuan, T.S. Chiang, Enhancement of electrokinetic remediation of arsenic spiked soil by chemical reagents, J. Hazard. Mater. 152(1) (2008) 309-315.[16] T. Suzuki, M. Niinae, T. Koga, T. Akita, M. Ohta, T. Choso, EDDS-enhanced electrokinetic remediation of heavy metal-contaminated clay soils under neutral pH conditions, Colloids Surf. A Physicochem. Eng. Asp. 440(2014) 145-150.[17] G.P. Fan, L. Cang, W.X. Qin, C.F. Zhou, H.I. Gomes, D.M. Zhou, Surfactants-enhanced electrokinetic transport of xanthan gum stabilized nanoPd/Fe for the remediation of PCBs contaminated soils, Sep. Purif. Technol. 114(2013) 64-72.[18] C. Dias-Ferreira, G.M. Kirkelund, L.M. Ottosen, Ammonium citrate as enhancement for electrodialytic soil remediation and investigation of soil solution during the process, Chemosphere 119(2015) 889-895.[19] K. Kamran, M. van Soestbergen, H.P. Huinink, L. Pel, Inhibition of electrokinetic ion transport in porous materials due to potential drops induced by electrolysis, Electrochim. Acta 78(2012) 229-235.[20] A.T. Yeung, Y.-Y. Gu, A review on techniques to enhance electrochemical remediation of contaminated soils, J. Hazard. Mater. 195(2011) 11-29.[21] A.T. Yeung, Geochemical processes affecting electrochemical remediation, Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater, John Wiley & Sons, Hoboken, N.J., 2009[22] C. Tamagnini, C. Jommi, F. Cattaneo, A model for coupled electro-hydro-mechanical processes in fine grained soils accounting for gas generation and transport, An. Acad. Bras. Cienc. 82(1) (2010) 169-193.[23] D.H. Kim, J.M. Cho, M. Baek, Pilot-scale ex situ electrokinetic restoration of saline greenhouse soil, J. Soils Sediments 11(2011) 947-958.[24] N.J. Cherepy, D. Wildenschild, Electrolyte management for effective long-term electro-osmotic transport in low-permeability soils, Environ. Sci. Technol. 37(2003) 3024-3030.[25] R.T. Gill, M.J. Harbottle, J.W.N. Smith, S.F. Thornton, Electrokinetic-enhanced bioremediation of organic contaminants:a review of processes and environmental applications, Chemosphere 107(2014) 31-42.[26] A.N. Alshawabken, H. Sarahney, Effect of current density on enhanced transformation of naphthalene, Environ. Sci. Technol. 39(2005) 5837-5843.[27] A.O. Juan, C.S. Peng, A.S. Ahmed, Simultaneous removal of cadmium fromkaolin and catholyte during soil electrokinetic remediation, Desalination 300(2012) 1-11.[28] T. Zhang, H. Zou, M.H. Ji, X.L. Li, L.Q. Li, T. Tang, Enhanced electrokinetic remediation of lead-contaminated soil by complexing agents and approaching anodes, Environ. Sci. Pollut. Res. 21(4) (2014) 3126-3133.[29] P. Zhang, C.J. Jin, Z.H. Zhao, G.B. Tian, 2D crossed electric field for electrokinetic remediation of chromium contaminated soil, J. Hazard. Mater. 177(1-3) (2010) 1126-1133.[30] Y.-Y. Gu, A.T. Yeung, Use of citric acid industrial wastewater to enhance electrochemical remediation of cadmium-contaminated natural clay, Geotechnical Special Publication No. 25, ASCE, San Francisco, U.S.A., 2012[31] Y.-Y. Gu, A.T. Yeung, Desorption of cadmium from a natural Shanghai clay using citric acid industrial wastewater, J. Hazard. Mater. 191(1-3) (2011) 144-149.[32] J.D. Rhoades, Salinity:electrical conductivity and total dissolved solids, Methods of Soil Analysis, Part 3, Chemical Methods, Soil Science Society of America, Madison, Wisconsin, 1996.[33] Y.-Y. Gu, A.T. Yeung, A. Koenig, H.J. Li, Effects of chelating agents on zeta potential of cadmium-contaminated natural clay, Sep. Sci. Technol. 44(2009) 2203-2222.[34] A.T. Yeung, T.B. Scott, S. Copinath, R.M. Menon, C.N. Hsu, Design, fabrication, and assembly of an apparatus for electrokinetic remediation studies, Geotech. Test. J. 20(2) (1997) 199-210.[35] A.T. Yeung, Contaminant extractability by electrokinetics, Environ. Eng. Sci. 23(1) (2006) 202-224.[36] J.W. Yang, Y.J. Lee, J.Y. Park, S.J. Kim, J.Y. Lee, Application of APG and Calfax 16L-35 on surfactant-enhanced electrokinetic removal of phenanthrene from kaolinite, Eng. Geol. 77(3-4) (2005) 243-251.[37] A. Colacicco, G.D. Gioannis, A. Muntoni, E. Pettinao, A. Polettini, A. Pomi, Enhanced electrokinetic treatment of marine sediments contaminated by heavy metals and PAHs, Chemosphere 81(2010) 46-56.[38] M.T. Ammami, F. Portet-Koltalo, A. Benamar, C. Duclairoir-Poc, H. Wang, F. Le Derf, Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments, Chemosphere 125(2015) 1-8.[39] A.T. Yeung, C.N. Hsu, Electrokinetic remediation of cadmium-contaminated clay, J. Environ. Eng. ASCE 131(2) (2005) 298-304.[40] Y.-Y. Gu, A.T. Yeung, H.J. Li, EDTA-enhanced electrokinetic extraction of cadmium from a natural clay of high buffer capacity, Advances in Environmental Geotechnics, Springer Berlin Heidelberg, Hangzhou, China, 2009.[41] R. Lopez-Vizcaino, J. Alonso, P. Canizares, M.J. Leon, V. Navarro,M.A. Rodrigo, C. Saez, Removal of phenanthrene from synthetic kaolin soils by electrokinetic soil flushing, Sep. Purif. Technol. 132(2014) 33-40. |